Learn More
The planarian central nervous system (CNS) can be used as a model for studying neural regeneration in higher organisms. Despite its simple structure, recent studies have shown that the planarian CNS can be divided into several molecular and functional domains defined by the expression of different neural genes. Remarkably, a whole animal, including the(More)
The study of planarian regeneration may help us to understand how we can rebuild organs and tissues after injury, disease or ageing. The robust regenerative abilities of planarians are based upon a population of totipotent stem cells (neoblasts), and among the organs regenerated by these animals is a well-organized central nervous system. In recent years,(More)
Planarians are attractive animals in which various questions related to the central nervous system (CNS) can be addressed, such as its origin and evolution, its degree of functional conservation among different organisms, and the plasticity and regenerative capabilities of neural cells and networks. However, it is first necessary to characterize at the gene(More)
The origin of the brain remains a challenging problem in evolutionary studies. To understand when and how the structural brain emerged, we analyzed the central nervous system (CNS) of a lower invertebrate, planarian. We conducted a large-scale screening of the head part-specific genes in the planarian by constructing a cDNA microarray. Competitive(More)
In previous studies, we have shown that dorsoventral (DV) interaction evokes not only blastema formation, but also morphogenetic events similar to those that occur in regeneration. However, it is still unclear what kinds of signal molecules are involved in the DV interaction. To investigate the signal systems involved in the DV interaction, we focused on a(More)
We report the first demonstration of a solid state laser passively mode-locked through the saturable absorption of short-wavelength intersubband transitions in doped quantum wells: a continuous wave Ti:sapphire laser end-pumped Tm,Ho:YAG laser at the center wavelength of 2.091 µm utilizing intersubband transitions in narrow In 0.53 Ga 0.47 As/Al 0.53 As(More)
The generation of high-repetition-rate optical frequency combs with an ultra-broad, coherent and smooth spectrum is important for many applications in optical communications, radio-frequency photonics and optical arbitrary waveform generation. Usually, nonlinear broadening techniques of comb-based sources do not provide the required flatness over the whole(More)
We propose the use of an intra-cavity Mach Zehnder interfer-ometer (MZI), for increasing the repetition rate at which carrier-envelope phase-locked pulses are generated in passively mode-locked fiber lasers. The attractive feature of the proposed scheme is that light escaping through the open output ports of the MZI can be used as a monitor signal feeding a(More)
Broadband graphene oxide/PVA films were used as saturable absorbers (SAs) for mode locking erbium-doped fiber laser (EDFL) and ytterbium-doped fiber laser (YDFL) at 1.06 μm and 1.55 μm. They provide modulation depths of 3.15% and 6.2% for EDFL and YDFL, respectively. Stable self-starting mode-locked pulses are obtained for both lasers, confirming that the(More)
Ets2 is expressed during morphogenesis of the somite and limb in the mouse embryo 165 Isthmin is a novel secreted protein expressed as part of the Fgf-8 synexpression group in the Xenopus midbrain–hindbrain organizer 169 Cloning and developmental expression of Baf57 in Xenopus laevis 177 Cloning and expression of Xenopus Prickle, an orthologue of a(More)
  • 1