Learn More
The study of planarian regeneration may help us to understand how we can rebuild organs and tissues after injury, disease or ageing. The robust regenerative abilities of planarians are based upon a population of totipotent stem cells (neoblasts), and among the organs regenerated by these animals is a well-organized central nervous system. In recent years,(More)
The planarian central nervous system (CNS) can be used as a model for studying neural regeneration in higher organisms. Despite its simple structure, recent studies have shown that the planarian CNS can be divided into several molecular and functional domains defined by the expression of different neural genes. Remarkably, a whole animal, including the(More)
Planarians are attractive animals in which various questions related to the central nervous system (CNS) can be addressed, such as its origin and evolution, its degree of functional conservation among different organisms, and the plasticity and regenerative capabilities of neural cells and networks. However, it is first necessary to characterize at the gene(More)
Among the bilateral animals, a centralized nervous system is found in both the deuterostome and protostome. To address the question of whether the CNS was derived from a common ancestor of deuterostomes and protostomes, it is essential to know kinds of genes existed in the CNS of the putative common ancestor and to trace the evolutionary divergence of genes(More)
Lake Victoria harbors more than 300 species of cichlid fish, which are adapted to a variety of ecological niches with various morphological species-specific features. However, it is believed that these species arose explosively within the last 14,000 years and transcripts among Lake Victoria cichlid species are almost identical in sequence. These data(More)
In previous studies, we have shown that dorsoventral (DV) interaction evokes not only blastema formation, but also morphogenetic events similar to those that occur in regeneration. However, it is still unclear what kinds of signal molecules are involved in the DV interaction. To investigate the signal systems involved in the DV interaction, we focused on a(More)
The origin of the brain remains a challenging problem in evolutionary studies. To understand when and how the structural brain emerged, we analyzed the central nervous system (CNS) of a lower invertebrate, planarian. We conducted a large-scale screening of the head part-specific genes in the planarian by constructing a cDNA microarray. Competitive(More)
Lake Victoria cichlid fishes are excellent examples of explosive adaptive radiation. Although Lake Victoria cichlids are believed to have arisen during a short period (approximately 14,000 years), they have various species-specific phenotypes. One important phenotype that distinguishes each species is the shape of the jaw, which has diverged to adapt to the(More)
Many chordate- and vertebrate-specific characteristics develop depending on retinoic acid (RA). Because the gene encoding the RA receptor exists only in chordates, RA function seems to be involved in chordate evolution. A cDNA microarray analysis of 9287 non-redundant cDNA clones was used to screen for RA target genes in the ascidian Ciona intestinalis. In(More)
  • 1