Massimo Gurioli

Learn More
We experimentally observe a sizable and reversible spectral tuning of the resonances of a two-dimensional photonic crystal microcavity induced by the introduction of a subwavelength size glass tip. The comparison between experimental near-field data, collected with ␭ / 6 spatial resolution, and results of numerical calculations shows that the spectral shift(More)
We demonstrate a photo-induced oxidation technique for tuning GaAs photonic crystal cavities using a low-power 390 nm pulsed laser. The laser oxidizes a small (< 1 µm) diameter spot, reducing the local index of refraction and blueshifting the cavity. The tuning progress can be actively monitored in real time. We also demonstrate tuning an individual cavity(More)
  • Ranojoy Bose, Jie Gao, James F Mcmillan, Alex D Williams, Chee Wei Wong, H Mabuchi +217 others
  • 2009
We present evidence of cavity quantum electrodynamics from a sparse density of strongly quantum-confined Pb-chalcogenide nanocrystals (between 1 and 10) approaching single-dot levels on moderately high-Q mesoscopic silicon optical cavities. Operating at important near-infrared (1500-nm) wavelengths, large enhancements are observed from devices and strong(More)
We employ a far-field analysis of the angular emission pattern to experimentally assess the symmetry of localized modes in coupled photonic-crystal cavities. We demonstrate that the spatial distribution of localized modes in photonic-crystal nanocavities may change from a bonding to an antibonding orbital, a feature that is unusual in quantum mechanical(More)
A revisited realization of the Young's double slit experiment is introduced to directly probe the photonic mode symmetry by photoluminescence experiments. We experimentally measure the far field angular emission pattern of quantum dots embedded in photonic molecules. The experimental data well agree with predictions from Young's interference and numerical(More)
Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination(More)
The insertion of a metal-coated tip on the surface of a photonic crystal microcavity is used for simultaneous near field imaging of electric and magnetic fields in photonic crystal nanocavities, via the radiative emission of embedded semiconductor quantum dots (QD). The photoluminescence intensity map directly gives the electric field distribution, to which(More)
A systematic optical study, including micro, ensemble and time resolved photoluminescence of GaAs/AlGaAs triple concentric quantum rings, self-assembled via droplet epitaxy, is presented. Clear emission from localized states belonging to the ring structures is reported. The triple rings show a fast decay dynamics, around 40 ps, which is expected to be(More)
  • 1