Learn More
This work addresses the challenge of analysing the quality of human movements from visual information which has use in a broad range of applications, from diagnosis and rehabilitation to movement optimisation in sports science. Traditionally, such assessment is performed as a binary classification between normal and abnormal by comparison against normal and(More)
We present a real-time RGB-D object tracker which manages occlusions and scale changes in a wide variety of scenarios. Its accuracy matches, and in many cases outper-forms, state-of-the-art algorithms for precision and it far exceeds most in speed. We build our algorithm on the existing colour-only KCF tracker which uses the 'kernel trick' to extend(More)
Low-cost systems that can obtain a high-quality foreground segmentation almost independently of the existing illumination conditions for indoor environments are very desirable, especially for security and surveillance applications. In this paper, a novel foreground segmentation algorithm that uses only a Kinect depth sensor is proposed to satisfy the(More)
Low-cost depth cameras, such as Microsoft Kinect, have completely changed the world of human-computer interaction through controller-free gaming applications. Depth data provided by the Kinect sensor presents several noise-related problems that have to be tackled to improve the accuracy of the depth data, thus obtaining more reliable game control platforms(More)
— Networks on Chip (NoC) has been proposed as a scalable and reusable solution for interconnecting the ever-growing number of processor/memory cores on a single silicon die. As the hardware complexity of a NoC is significant, methods for designing a NoC with low hardware overhead, matching the application requirements are essential. In this work, we present(More)