Learn More
Understanding the pathophysiogenesis of temporal lobe epilepsy (TLE) largely rests on the use of models of status epilepticus (SE), as in the case of the pilocarpine model. The main features of TLE are: (i) epileptic foci in the limbic system; (ii) an "initial precipitating injury"; (iii) the so-called "latent period"; and (iv) the presence of hippocampal(More)
Seizures in patients presenting with mesial temporal lobe epilepsy result from the interaction among neuronal networks in limbic structures such as the hippocampus, amygdala and entorhinal cortex. Mesial temporal lobe epilepsy, one of the most common forms of partial epilepsy in adulthood, is generally accompanied by a pattern of brain damage known as(More)
Continuous application of 4-aminopyridine (4-AP, 50 microM) to combined slices of hippocampus-entorhinal cortex obtained from adult mice induces (1) interictal discharges that initiate in the CA3 area and propagate via the hippocampal regions CA1 and subiculum to the entorhinal cortex and return to the hippocampus through the dentate gyrus; and (2) ictal(More)
Systemic administration of the cholinergic agonist pilocarpine (350-400 mg/kg, i.p.) to rats induces acute behavioral and EEG status epilepticus followed by apparent complete neurological recovery. In rats receiving higher doses of pilocarpine (i.e., 380-400 mg/kg), recurrent seizures reappear 2-2.5 weeks later and continue to occur as long as the rats are(More)
The absence of fragile X mental retardation protein results in the fragile X syndrome (FXS), a common form of mental retardation associated with attention deficit, autistic behavior, and epileptic seizures. The phenotype of FXS is reproduced in fragile X mental retardation 1 (fmr1) knockout (KO) mice that have region-specific altered expression of some(More)
Two types of spontaneous filed potentials were recorded in rat hippocampal slices after addition of 4-aminopyridine (4-AP; 50 microM). One consisted of brief, epileptiform discharges that occurred at 0.6 +/- 0.2 sec-1 in the CA3 and CA1 areas. The other type occurred less frequently (0.036 +/- 0.013 sec-1) and was recorded in CA1, CA3, and dentate areas. It(More)
1. Intracellular and extracellular recording techniques were used to study the effects of bath application of 4-aminopyridine (4-AP) on pyramidal cells of the CA1 subfield of rat hippocampal slices maintained in vitro. The concentration of 4-AP used in most experiments was 50 microM. However, similar results were obtained with a concentration ranging from 5(More)
Intracellular recordings were used to study the electrophysiological properties of rat subicular neurons in a brain slice preparation in vitro. Cells were classified as bursting neurons (n = 102) based on the firing pattern induced by depolarizing current pulses. The bursting response recorded at resting membrane potential (-66.1 +/- 6.2 mV, mean +/- SD n =(More)
Voltage-gated sodium channels (VGSCs) are key mediators of intrinsic neuronal and muscle excitability. Abnormal VGSC activity is central to the pathophysiology of epileptic seizures, and many of the most widely used antiepileptic drugs, including phenytoin, carbamazepine, and lamotrigine, are inhibitors of VGSC function. These antiepileptic drugs might also(More)
GABA is the main inhibitory neurotransmitter in the adult forebrain, where it activates ionotropic type A and metabotropic type B receptors. Early studies have shown that GABA(A) receptor-mediated inhibition controls neuronal excitability and thus the occurrence of seizures. However, more complex, and at times unexpected, mechanisms of GABAergic signaling(More)