Learn More
Seizures in patients presenting with mesial temporal lobe epilepsy result from the interaction among neuronal networks in limbic structures such as the hippocampus, amygdala and entorhinal cortex. Mesial temporal lobe epilepsy, one of the most common forms of partial epilepsy in adulthood, is generally accompanied by a pattern of brain damage known as(More)
Understanding the pathophysiogenesis of temporal lobe epilepsy (TLE) largely rests on the use of models of status epilepticus (SE), as in the case of the pilocarpine model. The main features of TLE are: (i) epileptic foci in the limbic system; (ii) an "initial precipitating injury"; (iii) the so-called "latent period"; and (iv) the presence of hippocampal(More)
Continuous application of 4-aminopyridine (4-AP, 50 microM) to combined slices of hippocampus-entorhinal cortex obtained from adult mice induces (1) interictal discharges that initiate in the CA3 area and propagate via the hippocampal regions CA1 and subiculum to the entorhinal cortex and return to the hippocampus through the dentate gyrus; and (2) ictal(More)
Voltage-gated sodium channels (VGSCs) are key mediators of intrinsic neuronal and muscle excitability. Abnormal VGSC activity is central to the pathophysiology of epileptic seizures, and many of the most widely used antiepileptic drugs, including phenytoin, carbamazepine, and lamotrigine, are inhibitors of VGSC function. These antiepileptic drugs might also(More)
The absence of fragile X mental retardation protein results in the fragile X syndrome (FXS), a common form of mental retardation associated with attention deficit, autistic behavior, and epileptic seizures. The phenotype of FXS is reproduced in fragile X mental retardation 1 (fmr1) knockout (KO) mice that have region-specific altered expression of some(More)
Systemic administration of the cholinergic agonist pilocarpine (350-400 mg/kg, i.p.) to rats induces acute behavioral and EEG status epilepticus followed by apparent complete neurological recovery. In rats receiving higher doses of pilocarpine (i.e., 380-400 mg/kg), recurrent seizures reappear 2-2.5 weeks later and continue to occur as long as the rats are(More)
Intracellular recordings were used to study the electrophysiological properties of rat subicular neurons in a brain slice preparation in vitro. Cells were classified as bursting neurons (n = 102) based on the firing pattern induced by depolarizing current pulses. The bursting response recorded at resting membrane potential (-66.1 +/- 6.2 mV, mean +/- SD n =(More)
Despite the increasing number of patients affected by neuronal migration disorders (NMDs) recently diagnosed in vivo by means of magnetic resonance imaging (MRI), few detailed data on the correlation between the neuroradiological and the anatomical features in the single NMD case are available. The present paper reports a combined cytoarchitectural and(More)
Voltage-gated sodium channels mediate regenerative inward currents that are responsible for the initial depolarization of action potentials in brain neurons. Many of the most widely used antiepileptic drugs, as well as a number of promising new compounds suppress the abnormal neuronal excitability associated with seizures by means of complex voltage- and(More)
1. Conventional intracellular and extracellular recording techniques were used to investigate the physiology and pharmacology of epileptiform bursts induced by 4-aminopyridine (4-AP, 50 microM) in the CA3 area of rat hippocampal slices maintained in vitro. 2. 4-AP-induced epileptiform bursts, consisting of a 25-to 80-ms depolarizing shift of the neuronal(More)