Massimiliano Valeriani

Learn More
In this work we review data on cortical generators of laser-evoked potentials (LEPs) in humans, as inferred from dipolar modelling of scalp EEG/MEG results, as well as from intracranial data recorded with subdural grids or intracortical electrodes. The cortical regions most consistently tagged as sources of scalp LERs are the suprasylvian region (parietal(More)
Previous electroencephalographic (EEG) evidence has shown event-related desynchronization (ERD) of alpha rhythms before predictable painful stimuli, as a possible neural concomitant of attentional preparatory processes (Babiloni, C., Brancucci, A., Babiloni, F., Capotosto, P., Carducci, F., Cincotti, F., Arendt-Nielsen, L., Chen, A.C., Rossini, P.M., 2003.(More)
CO2 laser evoked potentials to hand stimulation recorded using a scalp 19-channel montage in 11 normal subjects consistently showed early N1/P1 dipolar field distribution peaking at a mean latency of 159 ms. The N1 negativity was distributed in the temporoparietal region contralateral to stimulation and the P1 positivity in the frontal region. The N1/P1(More)
Pain is a complex multi-dimensional phenomenon that influences a wide variety of nervous system functions, including sensory--discriminative, affective--motivational and cognitive--evaluative components. So far, these components have been studied in both patients with chronic pain and in normal subjects in whom pain was induced experimentally. The(More)
Although cerebellar lesions do not cause evident sensory deficits, it has been suggested recently that the cerebellum might play a role in sensory acquisition and discrimination. To determine whether the cerebellum influences the early phases of cortical somatosensory processing, we recorded cortical somatosensory evoked potentials after median nerve(More)
Brain electrical source analysis (BESA) of the scalp electroencephalographic activity is well adapted to distinguish neighbouring cerebral generators precisely. Therefore, we performed dipolar source modelling in scalp medium nerve somatosensory evoked potentials (SEPs) recorded at 1.5-Hz stimulation rate, where all the early components should be(More)
OBJECTIVE To prove whether painful cutaneous stimuli can affect specifically the motor cortex excitability. METHODS The electromyographic (EMG) responses, recorded from the first dorsal interosseous muscle after either transcranial magnetic or electric anodal stimulation of the primary motor (MI) cortex, was conditioned by both painful and non-painful CO2(More)
Contact heat evoked potentials (CHEPs) were collected in 12 healthy subjects by stimulating the forearm skin with a couple of thermodes at a painful intensity. The stimulated area was 628 mm(2) and the repetition rate was 0.1 Hz. The electroencephalogram was recorded by 31 electrodes placed on the scalp according to an extended 10-20 System. A dipolar model(More)
Expectation and conditioning are supposed to be the two main psychological mechanisms for inducing a placebo response. Here, we further investigate the effects of both expectation, which was induced by verbal suggestion alone, and conditioning at the level of N1 and N2-P2 components of CO2 laser-evoked potentials (LEPs) and subjective pain reports.(More)
Motor evoked potentials (MEPs) to transcranial magnetic stimulation (TMS) of the left motor cortex were recorded from the right first dorsal interosseous (FDI), abductor pollicis brevis (APB), abductor digiti minimi (ADM), flexor carpi radialis (FCR), extensor carpi radialis (ECR) in 17 normal subjects, before and after painful application of capsaicin on(More)