Learn More
Connexins are the protein subunits of gap junction channels that allow a direct signaling pathway between networks of cells. The specific role of connexin channels in the homeostasis of different organs has been validated by the association of mutations in several human connexins with a variety of genetic diseases. Several connexins are present in the(More)
Extracellular ATP is a widespread autocrine/paracrine signal since many animal cells release ATP in the extracellular medium; often this release is mechanosensitive, but the molecular mechanism is still unclear. The involvement of vesicular release, conductive channels, or ABC transporters has been suggested in different cell types. We investigated the(More)
Extracellular nucleotides such as ATP and UTP are released in response to mechanical stimulation in different cell systems. It is becoming increasingly evident that ATP release plays a role in autocrine and paracrine stimulation of osteoblasts. Mechanical stimulation, as shear stress, membrane stretch or hypo-osmotic swelling, as well as oscillatory fluid(More)
Mutations in the GJB2 gene, encoding the gap-junction channel protein connexin 26, account for the majority of recessive forms and some of the dominant cases of deafness. Here, we report the frequency of GJB2 alleles in the Italian population affected by hearing loss and the functional analysis of six missense mutations. Genetic studies indicate that, apart(More)
Human connexins 26 and 30 were expressed either through the bicistronic pIRES-EGFP expression vector or as EYFP-tagged chimeras. When transiently transfected in communication-incompetent HeLa cells, hCx26-pIRES transfectants were permeable to dyes up to 622 Da, but were significantly less permeable to 759 Da molecules. Under the same conditions,(More)
Bacteria belonging to the Burkholderia cepacia complex (Bcc) are interesting for their involvement in pulmonary infections in patients affected by cystic fibrosis (CF) or chronic granulomatous disease. Many Bcc strains isolated from CF patients produce high amounts of exopolysaccharides (EPS). Although different strains sometimes biosynthesise different(More)
Mutations of the GJB2 gene, encoding connexin 26, are the most common cause of hereditary congenital hearing loss in many countries and account for up to 50% of cases of autosomal-recessive non-syndromic deafness. By contrast, only a few GJB2 mutations have been reported to cause an autosomal-dominant form of non-syndromic deafness. Here, we report a family(More)
Mutations in the GJB2 gene, which encodes the gap junction protein connexin26 (Cx26), are the major cause of genetic non-syndromic hearing loss. The role of the allelic variant M34T in causing hereditary deafness remains controversial. By combining genetic, clinical, biochemical, electrophysiological and structural modeling studies, we have re-assessed the(More)
The X-linked form of Charcot-Marie-Tooth disease (CMTX) is caused by mutations in connexin32 (Cx32), a gap junction protein expressed by Schwann cells where it forms reflexive channels that allow the passage of ions and signaling molecules across the myelin sheath. Although most mutations result in loss of function, several studies have reported that some(More)
Reactive oxygen species (ROS) have long been considered as toxic by-products of aerobic metabolism and appear involved in the pathogenesis of degenerative diseases. The physiological role of ROS as second messengers in cell signal transduction is, on the other hand, increasingly recognized. Here we investigated the effects of H(2)O(2) and extracellular(More)