Masoud Roham

Learn More
An integrated circuit for wireless real-time monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting high-resolution amperometric measurements in four settings of the input current. The chip architecture includes a first-order Delta Sigma modulator (Delta Sigma M) and a frequency-shift-keyed (FSK)(More)
An integrated circuit for real-time wireless monitoring of neurochemical activity in the nervous system is described. The chip is capable of conducting measurements in both fast-scan cyclic voltammetry (FSCV) and amperometry modes for a wide input current range. The chip architecture employs a second-order DeltaSigma modulator (DeltaSigmaM) and a(More)
A 16-channel chip for wireless in vivo recording of chemical and electrical neural activity is described. The 7.83-mm2 IC is fabricated using a 0.5-microm CMOS process and incorporates a 71-microW, 3rd-order, configurable, DeltaSigma modulator per channel, achieving an input-referred noise of 4.69 microVrms in 4-kHz BW and 94.1 pArms in 5-kHz BW for(More)
This paper reports on a miniaturized device for wireless monitoring of extracellular dopamine levels in the brain of an ambulatory rat using fast-scan cyclic voltammetry at a carbon-fiber microelectrode. The device comprises integrated circuitry for neurochemical recording fabricated in 0.5-microm double-poly triple-metal CMOS technology, which is assembled(More)
  • 1