Mashud Rana

Learn More
—We present INN, a new approach for predicting the hourly electricity load profile for the next day from a time series of previous electricity loads. It uses an iterative methodology to make the predictions for the 24-hour forecasting horizon. INN combines an efficient mutual information feature selection method with a neural network forecasting algorithm.(More)
Appropriate feature (variable) selection is crucial for accurate forecasting. In this paper we consider the task of forecasting the future electricity load from a time series of previous electricity loads, recorded every 5 minutes. We propose a two-step approach that identifies a set of candidate features based on the data characteristics and then selects a(More)
—Forecasting solar power generated from photovoltaic systems at different time intervals is necessary for ensuring reliable and economic operation of the electricity grid. In this paper, we study the application of neural networks for predicting the next day photovoltaic power outputs in 30 minutes intervals from the previous values, without using any(More)