Learn More
All Ca2(+)-dependent cell adhesion molecules are synthesized as precursor polypeptides followed by a series of posttranslational modifications including proteolytic cleavage. The mature proteins are formed intracellularly and transported to the cell surface. For uvomorulin the precursor segment is composed of 129-amino acid residues which are cleaved off to(More)
The Cal+-dependent cell adhesion molecule uvomorulin is a member of the cadherin gene family. Its cytoplasmic region complexes with structurally defined proteins termed a-, ß-, and y-catenins. Here we show that A-CAM (N-cadherin), another member of this gene family, also associates with catenins suggesting that this complex formation may be a general(More)
Cadherins are transmembrane glycoproteins involved in Ca2+-dependent cell-cell adhesion. Deletion of the COOH-terminal residues of the E-cadherin cytoplasmic domain has been shown to abolish its cell adhesive activity, which has been ascribed to the failure of the deletion mutants to associate with catenins. Based on our present results, this concept needs(More)
Cadherin trafficking controls tissue morphogenesis and cell polarity. The endocytic adaptor Numb participates in apicobasal polarity by acting on intercellular adhesions in epithelial cells. However, it remains largely unknown how Numb controls cadherin-based adhesion. Here, we found that Numb directly interacted with p120 catenin (p120), which is known to(More)
CD151, a member of the tetraspanin family proteins, tightly associates with integrin alpha3beta1 and localizes at basolateral surfaces of epithelial cells. We found that overexpression of CD151 in A431 cells accelerated intercellular adhesion, whereas treatment of cells with anti-CD151 mAb perturbed the integrity of cortical actin filaments and cell(More)
The downregulation of E-cadherin function has fundamental consequences with respect to cancer progression, and occurs as part of the epithelial-mesenchymal transition (EMT). In this study, we show that the expression of the Discosoma sp. red fluorescent protein (DsRed)-tagged cadherin cytoplasmic domain in cells inhibited the cell surface localization of(More)
High lipoprotein(a) [Lp(a)] levels are a major risk factor for the development of atherosclerosis. However, because apolipoprotein(a) [apo(a)], the unique component of Lp(a), is found only in primates and humans, the study of human Lp(a) has been hampered due to the lack of appropriate animal models. Using somatic cell nuclear transfer (SCNT) techniques, we(More)
Snail1 is a transcription factor that induces the epithelial to mesenchymal transition (EMT). During EMT, epithelial cells lose their junctions, reorganize their cytoskeletons, and reprogram gene expression. Although Snail1 is a prominent repressor of E-cadherin transcription, its precise roles in each of the phenomena of EMT are not completely understood,(More)
The 293 cell line, used extensively in various types of studies due to the ease with which these cells can be transfected, was thought to be derived by the transformation of primary cultures of human embryonic kidney cells with sheared adenovirus type 5 DNA. Although the 293 cells were assumed to originate from epithelial cells, the exact origin of these(More)
Tumor growth is characterized by anchorage independence and the loss of contact inhibition. Previously, we showed that either a red fluorescent protein (DsRed)-tagged N-cadherin or E-cadherin cytoplasmic domain (DNCT or DECT) could function as a dominant negative inhibitor by blocking the cell surface localization of endogenous E-cadherin and inducing cell(More)