Masayuki Asakawa

Learn More
Analyzing correlation functions of charmonia at finite temperature (T) on 32(3)x(32-96) anisotropic lattices by the maximum entropy method (MEM), we find that J/psi and eta(c) survive as distinct resonances in the plasma even up to T approximately 1.6T(c) and that they eventually dissociate between 1.6T(c) and 1.9T(c) (T(c) is the critical temperature of(More)
Fluctuations in the multiplicities and momentum distributions of particles emitted in relativistic heavy-ion collisions have been widely considered as probes of thermalization and the statistical nature of particle production in such reactions [1]. The characteristic behavior of temperature and pion multiplicity fluctuations in the final state has been(More)
We argue that an expanding quark-gluon plasma has an anomalous viscosity, which arises from interactions with dynamically generated color fields. We derive an expression for the anomalous viscosity in the turbulent plasma domain and apply it to the hydrodynamic expansion phase, when the quark-gluon plasma is near equilibrium. The anomalous viscosity(More)
We discuss various mechanisms for the creation of an asymmetric charge fluctuation with respect to the reaction plane among hadrons emitted in relativistic heavy-ion collisions. We show that such mechanisms exist in both the hadronic gas and the partonic phases of quantum chromodynamics. The mechanisms considered here all require the presence of a strong(More)
We derive an expression for the anomalous viscosity in an anisotropically expanding quark-gluon-plasma, which arises from interactions of thermal partons with dynamically generated color fields. The anomalous viscosity dominates over the collisional viscosity for large velocity gradients or weak coupling. This effect may provide an explanation for the(More)
The presence of a critical point in the QCD phase diagram can deform the trajectories describing the evolution of the expanding fireball in the mu_B-T phase diagram. If the average emission time of hadrons is a function of transverse velocity, as microscopic simulations of the hadronic freeze-out dynamics suggest, the deformation of the hydrodynamic(More)