Learn More
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining(More)
We announce the release of the fourth version of MEGA software, which expands on the existing facilities for editing DNA sequence data from autosequencers, mining Web-databases, performing automatic and manual sequence alignment, analyzing sequence alignments to estimate evolutionary distances, inferring phylogenetic trees, and testing evolutionary(More)
A new method called the neighbor-joining method is proposed for reconstructing phylogenetic trees from evolutionary distance data. The principle of this method is to find pairs of operational taxonomic units (OTUs [= neighbors]) that minimize the total branch length at each stage of clustering of OTUs starting with a starlike tree. The branch lengths as(More)
With its theoretical basis firmly established in molecular evolutionary and population genetics, the comparative DNA and protein sequence analysis plays a central role in reconstructing the evolutionary histories of species and multigene families, estimating rates of molecular evolution, and inferring the nature and extent of selective forces shaping the(More)
  • M Nei
  • 1996
Recent developments of statistical methods in molecular phylogenetics are reviewed. It is shown that the mathematical foundations of these methods are not well established, but computer simulations and empirical data indicate that currently used methods such as neighbor joining, minimum evolution, likelihood, and parsimony methods produce reasonably good(More)
UNLABELLED We have developed a new software package, Molecular Evolutionary Genetics Analysis version 2 (MEGA2), for exploring and analyzing aligned DNA or protein sequences from an evolutionary perspective. MEGA2 vastly extends the capabilities of MEGA version 1 by: (1) facilitating analyses of large datasets; (2) enabling creation and analyses of groups(More)
The magnitudes of the systematic biases involved in sample heterozygosity and sample genetic distances are evaluated, and formulae for obtaining unbiased estimates of average heterozygosity and genetic distance are developed. It is also shown that the number of individuals to be used for estimating average heterozygosity can be very small if a large number(More)
  • M Nei
  • 1973
A method is presented by which the gene diversity (heterozygosity) of a subdivided population can be analyzed into its components, i.e., the gene diversities within and between subpopulations. This method is applicable to any population without regard to the number of alleles per locus, the pattern of evolutionary forces such as mutation, selection, and(More)
Examining the pattern of nucleotide substitution for the control region of mitochondrial DNA (mtDNA) in humans and chimpanzees, we developed a new mathematical method for estimating the number of transitional and transversional substitutions per site, as well as the total number of nucleotide substitutions. In this method, excess transitions, unequal(More)
  • M Nei, W H Li
  • 1979
A mathematical model for the evolutionary change of restriction sites in mitochondrial DNA is developed. Formulas based on this model are presented for estimating the number of nucleotide substitutions between two populations or species. To express the degree of polymorphism in a population at the nucleotide level, a measure called "nucleotide diversity" is(More)