Masatoshi Nakatsuji

Learn More
DNA polymerase from Pyrococcus kodakaraensis KOD1 (KOD DNA polymerase) is one of the most efficient thermostable PCR enzymes exhibiting higher accuracy and elongation velocity than any other commercially available DNA polymerase [M. Takagi et al. (1997) Appl. Environ. Microbiol. 63, 4504-4510]. However, even when KOD DNA polymerase was used for PCR,(More)
In addition to its role in DNA repair, nuclear poly(ADP-ribose) polymerase-1 (PARP-1) mediates brain damage when it is over-activated by oxidative/nitrosative stress. Nonetheless, it remains unclear how PARP-1 is activated in neuropathological contexts. Here we report that PARP-1 interacts with a pool of glyceradehyde-3-phosphate dehydrogenase (GAPDH) that(More)
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a homotetrameric enzyme involved in a key step of glycolysis, also has a role in mediating cell death under nitrosative stress. Our previous reports suggest that nitric oxide-induced intramolecular disulfide-bonding GAPDH aggregation, which occurs through oxidation of the active site cysteine (Cys-152),(More)
Lipocalin-type prostaglandin D synthase (L-PGDS), a member of the lipocalin superfamily, possesses the function of forming complexes together with various small lipophilic molecules. In this study, we chose telmisartan as a model drug due to its pH dependent poor water solubility, and developed and characterized a novel solubilized formulation of(More)
The hydrophobic cavity of lipocalin-type prostaglandin D synthase (L-PGDS) has been suggested to accommodate various lipophilic ligands through hydrophobic effects, but its energetic origin remains unknown. We characterized 18 buffer-independent binding systems between human L-PGDS and lipophilic ligands using isothermal titration calorimetry. Although the(More)
Amyloidogenic proteins often form many types of aggregates, which are a critical determinant of cytotoxicity and tissue specificity. However, the molecular mechanisms underlying the generation of distinct amyloids and their influence on cells remain largely unknown. We herein investigated the polymorphic amyloid formation of the yeast prion protein,(More)
Hyper-activation of the MAPK and PI3K-AKT pathways is linked to tumour progression in triple-negative breast cancer (TNBC). However, clinically effective predictive markers for drugs targeted against protein kinases involved in these pathways have not been identified. We investigated the ability of MEK and PI3K catalytic activity to predict sensitivity to(More)
The purpose of this study was to develop a pH-independent drug release formulation using lipocalin-type prostaglandin D synthase, a member of the lipocalin superfamily, with the function of forming complexes together with various small lipophilic molecules. Dipyridamole, a poorly water-soluble drug, showing a pH-dependent solubility profile, was used as the(More)
Lipocalin-type prostaglandin D synthase (L-PGDS) is a member of the lipocalin superfamily, which is composed of secretory transporter proteins, and binds a wide variety of small hydrophobic molecules. Using this function, we have reported the feasibility of using L-PGDS as a novel drug delivery vehicle for poorly water-soluble drugs. In this study, we show(More)
  • 1