Masatora Fukuda

  • Citations Per Year
Learn More
A noncovalent RNA complex embedding an aptamer function and a fluorophore-labeled peptide affords a fluorescent ribonucleopeptide (RNP) framework for constructing fluorescent sensors. By taking an advantage of the noncovalent properties of the RNP complex, the ligand-binding and fluorescence characteristics of the fluorescent RNP can be independently tuned(More)
The structural characteristics of RNA-peptide (RNP) complexes are suitable for molding of a ligand-binding pocket of the RNP complex in a stepwise manner. The first step involves molding of the RNA subunit by in vitro selection of an RNP pool originating from an RNA library and the peptide, as previously reported for the construction of an ATP-binding RNP(More)
Fluorescent biosensors that facilitate reagentless sensitive detection of small molecules are crucial tools in the areas of therapeutics and diagnostics. However, construction of fluorescent biosensors with desired characteristics, that is, detection wavelengths and concentration ranges for ligand detection, from macromolecular receptors is not a(More)
Tools for selective recognition and sensing of specific phosphorylated tyrosine residues on the protein surface are essential for understanding signal transduction cascades in the cell. A stable complex of RNA and peptide, a ribonucleopeptide (RNP), provides effective approaches to tailor RNP receptors and fluorescent RNP sensors for small molecules. In(More)
General strategy for the development of fluorescent biosensors as a tracer of 'key' molecule in the cellular system would provide important breakthroughs for ubiquitous applications in the field of diagnosis and pharmacology in addition to our understanding of cellular events. The sophisticated design of fluorescent biosensors based on the organic synthesis(More)
We describe here a novel strategy to create a ribonucleopeptide (RNP) receptor with defined substrate-binding geometry. RNP library was generated by introducing randomized nucleotide sequences in the RNA subunit of the structurally well-defined complex of RRE-RNA and the Rev peptide by a structure-based design. ATP-binding RNP receptors were selected from(More)
A ribonucleopeptide aptamer against ATP was obtained by the in vitro selection method. This ribonucleopeptide aptamer comprises a randomized and selected RNA linked to the Rev-responsive element (RRE) in complex with a peptide derived from an HIV Rev protein. The ribonucleopeptide aptamer selectively binds ATP in the presence of the Rev-derived peptide,(More)
We describe here a novel strategy to create a stable functional ribonucleopeptide (RNP) complex by the covalent linking method. Adenosine-5'-triphosphate (ATP)-binding RNP receptors were selected from the RNP library by in vitro selection. The RNA subunit of RNP is utilized to construct a ligand-binding cavity, while the peptide subunit can be(More)
Fluorescent biosensors based on the biological macromolecule are convenient tools for investigating the event occurring in the living cell. As for one of the candidates of such biosensors, we have reported a fluorescent sensor by utilizing a ribonucleopeptide (RNP) framework. Fluorescent RNP sensors are obtained from the fluorescent RNP library constructed(More)