Learn More
A goal in visual neuroscience is to reveal how the visual system reconstructs the three-dimensional (3D) representation of the world from two-dimensional retinal images. Although the importance of texture gradient cues in the process of 3D vision has been pointed out, most studies concentrate on the neural process based on binocular disparity. We report the(More)
In order to separate the cognitive processes associated with phonological encoding and the use of a visual word form lexicon in reading, it is desirable to compare the processing of words presented in a visually familiar form with words in a visually unfamiliar form. Japanese Kana orthography offers this possibility. Two phonologically equivalent but(More)
It has been empirically established that the cerebral cortical areas defined by Brodmann one hundred years ago solely on the basis of cellular organization are closely correlated to their function, such as sensation, association, and motion. Cytoarchitectonically distinct cortical areas have different densities and types of neurons. Thus, signaling patterns(More)
Concealed information, which is information only known to oneself is sometimes crucial for criminal investigation. In this study, we examined cortical activations related to incidental responses to concealed information. We found that cortical responses to stimuli related to concealed information were different from those to other stimuli; the bilateral(More)
In this article we address the major issue of space vision, how the brain represents the 3D shape of objects in the real world, on the basis of psychophysics and neurophysiology. In psychophysics, Gibson found texture gradients and width gradients, as well as the gradient of binocular disparity, as the major cues for surface orientation in depth. Marr(More)
The purpose of the present study was to examine whether neurons in the caudolateral part of the intraparietal sulcus (area CIP), a part of the posterior parietal cortex, contribute to short-term memory and perceptual decision of three-dimensional (3D) surface orientation, in addition to its purely visual nature of responding selectively to 3D surface(More)
The purpose of this study was to examine brain areas involved in simple arithmetic, and to compare these areas between adults and children. Eight children (four girls and four boys; age, 9-14 years) and eight adults (four women and four men; age, 40-49 years) were subjected to this study. Functional magnetic resonance imaging (fMRI) was performed during(More)
We can see things in three dimensions because the visual system re-constructs the three-dimensional (3D) configurations of objects from their two-dimensional (2D) images projected onto the retinas. The purpose of this paper is to give an overview of the psychological background and recent physiological findings concerning three-dimensional vision.(More)
Reward and punishment have opposite affective value but are both processed by the cingulate cortex. However, it is unclear whether the positive and negative affective values of monetary reward and punishment are processed by separate or common subregions of the cingulate cortex. We performed a functional magnetic resonance imaging study using a free-choice(More)
To examine the neural basis of route knowledge by which one can reach one's destination, we recorded the activity of 580 neurons in the monkey medial parietal region (MPR) while monkeys actively navigated through a virtual environment. One hundred eighty of these neurons (31%) showed significant responses to the monkeys' movements in the virtual(More)