Learn More
A goal in visual neuroscience is to reveal how the visual system reconstructs the three-dimensional (3D) representation of the world from two-dimensional retinal images. Although the importance of texture gradient cues in the process of 3D vision has been pointed out, most studies concentrate on the neural process based on binocular disparity. We report the(More)
A class of neurons specifically related to hand movements was studied in the posterior parietal cortex while the monkeys manipulated different types of objects. We examined the neuronal activity during manipulation of objects by the hand in the light and in the dark. Fifty-five neurons were active during manipulation in the dark and were classified as(More)
We studied the functional properties of the hand manipulation task-related neurons (N = 136) in the posterior bank of the intraparietal sulcus (IPS) using four kinds of objects for manipulation. We performed cluster analysis by comparing the profiles of activity of these neurons across objects during manipulation in the light, and classified them into nine(More)
Recent neurophysiological studies in alert monkeys have revealed that the parietal association cortex plays a crucial role in depth perception and visually guided hand movement. The following five classes of parietal neurons covering various aspects of these functions have been identified: (1) depth-selective visual-fixation (VF) neurons of the inferior(More)
In this article we address the major issue of space vision, how the brain represents the 3D shape of objects in the real world, on the basis of psychophysics and neurophysiology. In psychophysics, Gibson found texture gradients and width gradients, as well as the gradient of binocular disparity, as the major cues for surface orientation in depth. Marr(More)
We examined the relations between the steady-state frequency of discharge of cells in the arm area of the motor cortex of the monkey and the direction and magnitude of the three-dimensional static force exerted by the arm on an isometric manipulandum. Data were analyzed from two monkeys (n = 188 cells) using stepwise multiple linear regression. In 154 of(More)
In our previous studies of hand manipulation task-related neurons, we found many neurons of the parietal association cortex which responded to the sight of three-dimensional (3D) objects. Most of the task-related neurons in the AIP area (the lateral bank of the anterior intraparietal sulcus) were visually responsive and half of them responded to objects for(More)
It has been empirically established that the cerebral cortical areas defined by Brodmann one hundred years ago solely on the basis of cellular organization are closely correlated to their function, such as sensation, association, and motion. Cytoarchitectonically distinct cortical areas have different densities and types of neurons. Thus, signaling patterns(More)
In order to separate the cognitive processes associated with phonological encoding and the use of a visual word form lexicon in reading, it is desirable to compare the processing of words presented in a visually familiar form with words in a visually unfamiliar form. Japanese Kana orthography offers this possibility. Two phonologically equivalent but(More)