Learn More
A method, called " the discrete variational method " , has been recently presented by Furihata and Matsuo for designing finite difference schemes that inherit energy conservation or dissipation property from nonlinear partial differential equations (PDEs). In this paper the method is enhanced so that the derived schemes be highly accurate in space by(More)
This paper deals with a finite element method involving Petrov-Galerkin method with cubic B-splines as basis functions and quintic B-splines as weight functions to solve a general fourth order boundary value problem with a particular case of boundary conditions. The basis functions are redefined into a new set of basis functions which vanish on the boundary(More)
  • 1