Masataka Nishikawa

Learn More
The development of nanotechnology has increased the risk of environmental exposure to types of particles other than those derived from combustion, namely, industrial nanomaterials. Patients with bronchial asthma are sensitive to inhaled substances, including particulate matter. This study examined the effects of pulmonary exposure to a type of nano-sized(More)
The development of nanotechnology has increased the risk of exposure to types of particles other than combustion-derived particles in the environment, namely, industrial nanomaterials. On the other hand, patients with bronchial asthma are sensitive to inhaled substances including particulate matters. This study examined the effects of pulmonary exposure to(More)
A rapid and simple ecotoxicological bioassay allows quick estimation of the effects of Simazine (CAT) or 3,5-dichlorophenol (3,5-DCP) on the growth of the green alga Pseudokirchneriella subcapitata (formerly Selenastrum capricornutum). The effects of a 15-min exposure to CAT or 3,5-DCP on delayed fluorescence (DF) in P. subcapitata were compared to the(More)
The quality and quantity of toxic materials adsorbed onto Asian sand dust (ASD) are different based on dust source regions and passage routes. The aggravating effects of two ASDs (ASD1 and ASD2) transported from the source regions of Inner Mongolia and northeast China on lung eosinophilia were compared to clarify the role of toxic materials in ASD. The ASDs(More)
Epidemiologic studies have reported that Asian sand dust (ASD) particles can affect respiratory health; however, the mechanisms remain unclear. We investigated the effects of ASD on airway epithelial cells and immune cells, and their contributing factors to the effects. Human airway epithelial cells were exposed to ASD collected on 1-3 May (ASD1) and on(More)
PM2.5 can exacerbate asthma. Organic substances adsorbed on PM2.5-rich dust (PM2.5rd) were inactivated by heating at 360 °C. To characterize the role of organic substances, the effects of PM2.5rd and heated PM2.5-rich dust (H-PM2.5 rd) on allergic lung inflammation were investigated. BALB/c mice were intratracheally administered PM2.5rd or H-PM2.5rd with or(More)
Data on the effects of sand dust toward allergic asthma produced by indoor allergens, such as house dust mites, are not currently available. This study was undertaken to clarify the role of Asian sand dust on mite allergen, Dermatophagoides farinae (D. farinae)-induced eosinophilic inflammation in the murine lung, using sand dusts from the Maowusu Desert(More)
It has been reported that ambient particulate matter (PM) in some large cities, such as Beijing, China, causes adverse respiratory health effects. However, there is currently no experimental report on the relationship between bronchial asthma and urban PM (UPM) in northeast Asia. In this study, the microbial and chemical substances adsorbed onto UPM(More)
The aggravating effects of Asian sand dust (SD) and related minerals on the allergic inflammation were examined in the murine lungs. The toxic materials adsorbed onto Asian SD, Arizona SD were inactivated by heat-treatment. ICR mice were administered mineral samples (0.1 mg/mouse) and/or ovalbumin (OVA) (1 microg/mouse) - normal saline (control), Asian SD,(More)
Urban particulate matter (UPM) has been shown to have an aggravating effect on Th2-associated immune systems in adult mice. However, the effects of fetal exposure to UPM on immune response in offspring have not been elucidated. In the present study, we administered UPM (200 µg/animal) by intratracheal injection to pregnant dams on days 7 and 14 of(More)