Masashige Shinkai

Learn More
The effect of hyperthermia on solid glioma tissue formed subcutaneously in the left femoral region of female F344 rats was investigated. Magnetite cationic liposomes (MCLs), which have a positive surface charge, were used as heating mediators for intracellular hyperthermia. MCLs were injected into the solid tumors, which were then subjected to irradiation(More)
Since magnetic particles have unique features, the development of a variety of medical applications has been possible. The most unique feature of magnetic particles is their reaction to a magnetic force, and this feature has been utilized in applications such as drug targeting and bioseparation including cell sorting. Recently, magnetic nanoparticles have(More)
To effectively treat bone diseases using bone regenerative medicine, there is an urgent need to develop safe cheap drugs that can potently induce bone formation. Here, we demonstrate the osteogenic effect of icariin, the main active compound of Epimedium pubescens. Icariin induced osteogenic differentiation in pre-osteoblastic MC3T3-E1 cells and mouse(More)
To effectively treat bone diseases using bone regenerative medicine, there is an urgent need to develop safe and cheap drugs that can potently induce bone formation. Here, we demonstrate the osteogenic effects of icariin, the main active compound of Epimedium pubescens. Icariin induced osteogenic differentiation of preosteoblastic cells. The combination of(More)
'Magnetite cationic liposomes (MCL)' were developed as a means to generate intracellular hyperthermia. Affinity of the MCL to glioma cells was ten times higher than that of magnetite 'neutral' liposomes due to the electrostatic interaction based on the positive charge of the MCL. Heat generation of the MCL was studied using agar phantoms and small pellets(More)
Immunotherapy (IT) has become an accepted therapeutic modality. We previously reported that intracellular hyperthermia (IH) using magnetic nanoparticles induces antitumor immunity. We undertook these studies in order to study the combined effects of IT and IH on melanoma. Magnetite cationic liposomes (MCLs) have a positive surface charge and generate heat(More)
Heat shock proteins are recognized as significant participants in immune reactions. In this study, we have demonstrated that the cell surface presentation of MHC class I antigen was increased in tandem with increased heat shock protein 70 (HSP70) expression and the immunogenicity of rat T-9 glioma cells was enhanced by hyperthermia. T-9 cells showed growth(More)
Induction of antitumor immunity to T-9 rat glioma by intracellular hyperthermia using functional magnetic particles was investigated. Magnetite cationic liposomes (MCLs), which have a positive surface charge, were used as heating mediators for intracellular hyperthermia. Solid T-9 glioma tissues were formed subcutaneously on both femurs of female F344 rats,(More)
Magnetoliposomes (MLs) conjugated with an antibody fragment to give specificity to a tumor were applied to hyperthermia for cancer. The Fab' fragment of the G250 antibody, which binds to MN antigen on many types of human renal cell carcinoma, was cross-linked to N-(6-maleimidocaproyloxy)-dipalmitoyl phosphatidylethanolamine (EMC-DPPE) in liposomal membrane.(More)
Heating properties of magnetite cationic liposomes (MCL) were investigated in ex vivo experiments using implanted cell pellets. The cell pellets, which consisted of rat glioma T9 cells into which MCL had been incorporated in a petri dish, were implanted subcutaneously in the left femoral region of female F344 rats. The rats were placed in a magnetic field(More)