Masashi Mori

Learn More
Quantitative tracking of particle motion using live-cell imaging is a powerful approach to understanding the mechanism of transport of biological molecules, organelles, and cells. However, inferring complex stochastic motion models from single-particle trajectories in an objective manner is nontrivial due to noise from sampling limitations and biological(More)
Animal cells disassemble and reassemble their nuclear envelopes (NEs) upon each division. Nuclear envelope breakdown (NEBD) serves as a major regulatory mechanism by which mixing of cytoplasmic and nuclear compartments drives the complete reorganization of cellular architecture, committing the cell for division. Breakdown is initiated by(More)
Actin-based contractility orchestrates changes in cell shape underlying cellular functions ranging from division to migration and wound healing. Actin also functions in intracellular transport, with the prevailing view that filamentous actin (F-actin) cables serve as tracks for motor-driven transport of cargo. We recently discovered an alternate mode of(More)
Swarm Networks are a generalization of Cellular Automata (CA), in which the neighborhoods and functionalities of cells are determined by the presence or absence of connections between cells. This paper presents a Swarm Network in which connections can be changed dynamically, and in which the cells (called "agents") are subject to Brownian motion. According(More)
Surface contraction waves (SCWs) in oocytes and embryos lead to large-scale shape changes coupled to cell cycle transitions and are spatially coordinated with the cell axis. Here, we show that SCWs in the starfish oocyte are generated by a traveling band of myosin II-driven cortical contractility. At the front of the band, contractility is activated by(More)
Swarm Networks are a generalization of Cellular Automata, in which the neighborhoods and functionalities of cells are determined by the presence or absence of connections between cells. This paper presents a Swarm Network in which connections can be changed dynamically, and in which the cells (called “agents”) are subject to Brownian motion. According to(More)
  • 1