Learn More
The evolution of mitogenic pathways has led to the parallel requirement for negative control mechanisms, which prevent aberrant growth and the development of cancer. Principally, such negative control mechanisms are represented by tumor suppressor genes, which normally act to constrain cell proliferation (Macleod, K. 2000. Curr. Opin. Genet. Dev. 10:81-93).(More)
The epithelial-mesenchymal transition (EMT) is a crucial event in wound healing, tissue repair, and cancer progression in adult tissues. Here, we demonstrate that transforming growth factor (TGF)-β induced EMT and that long-term exposure to TGF-β elicited the epithelial-myofibroblastic transition (EMyoT) by inactivating the MEK-Erk pathway. During the EMT(More)
RB1-inducible coiled-coil 1 (RB1CC1, also known as FIP200) plays a role in the enhancement of the RB1 pathway through the direct binding to a GC-rich region 201bp upstream (from the initiation ATG) of the RB1 promoter. Here, we identified hSNF5 and p53 as the binding partners of RB1CC1 by immunoprecipitation and immunofluorescence assays. Interaction(More)
Epithelial-mesenchymal transition (EMT) is a crucial event in wound healing, tissue repair and cancer progression in adult tissues. We have recently shown that transforming growth factor (TGF)-β-induced EMT involves isoform switching of fibroblast growth factor receptors by alternative splicing. We performed a microarray-based analysis at single exon level(More)
Transforming growth factor (TGF)-β acts as a tumor suppressor during cancer initiation, but as a tumor promoter during tumor progression. It has become increasingly clear that TGF-β plays fundamental roles in multiple steps of tumor progression, including epithelial-mesenchymal transition (EMT). The EMT, first described by developmental biologists at the(More)
Transforming growth factor-β (TGF-β) signaling is controlled by a variety of regulators, of which Smad7, c-Ski, and SnoN play a pivotal role in its negative regulation. Arkadia is a RING-type E3 ubiquitin ligase that targets these negative regulators for degradation to enhance TGF-β signaling. In the present study we identified a candidate human tumor(More)
RB1-inducible coiled-coil 1 (RB1CC1) plays a significant role in the enhancement of the retinoblastoma tumor suppressor (RB1) pathway and is involved in breast cancer development. However, RB1CC1's role in clinical progression of breast cancer has not yet been evaluated, so, as a first step, it is necessary to establish its usefulness as a tool to evaluate(More)
Abnormal DNA methylation at the C-5 position of cytosine (5mC) of CpG dinucleotides is a well-known epigenetic feature of cancer. Levels of E-cadherin, which is regularly expressed in epithelial tissues, are frequently reduced in epithelial tumors due to transcriptional repression, sometimes accompanied by hypermethylation of the promoter region. δEF1(More)
Bone morphogenetic proteins (BMPs) regulate various biological processes, mostly mediated by cells of mesenchymal origin. However, the roles of BMPs in epithelial cells are poorly understood. Here, we demonstrate that, in polarized epithelial cells, BMP signals are transmitted from BMP receptor complexes exclusively localized at the basolateral surface of(More)
Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs.(More)
  • 1