Learn More
Discoidin domain receptor (DDR) is a cell-surface receptor tyrosine kinase activated by the binding of its discoidin (DS) domain to fibrillar collagen. Here, we have determined the NMR structure of the DS domain in DDR2 (DDR2-DS domain), and identified the binding site to fibrillar collagen by transferred cross-saturation experiments. The DDR2-DS domain(More)
Yeast frequenin (Frq1), a small N-myristoylated EF-hand protein, activates phosphatidylinositol 4-kinase Pik1. The NMR structure of Ca2+-bound Frq1 complexed to an N-terminal Pik1 fragment (residues 121-174) was determined. The Frq1 main chain is similar to that in free Frq1 and related proteins in the same branch of the calmodulin superfamily. The(More)
In eukaryotes, shortening of the 3'-poly(A) tail is the rate-limiting step in the degradation of most mRNAs, and two major mRNA deadenylase complexes--Caf1-Ccr4 and Pan2-Pan3--play central roles in this process, referred to as deadenylation. However, the molecular mechanism triggering deadenylation remains elusive. Previously, we demonstrated that(More)
Frq1, a 190-residue N-myristoylated calcium-binding protein, associates tightly with the N terminus of Pik1, a 1066-residue phosphatidylinositol 4-kinase. Deletion analysis of an Frq1-binding fragment, Pik1-(10-192), showed that residues within 80-192 are necessary and sufficient for Frq1 association in vitro. A synthetic peptide (residues 151-199) competed(More)
G protein-activated inwardly rectifying potassium channel (GIRK) plays crucial roles in regulating heart rate and neuronal excitability in eukaryotic cells. GIRK is activated by the direct binding of heterotrimeric G protein βγ subunits (Gβγ) upon stimulation of G protein-coupled receptors, such as M2 acetylcholine receptor. The binding of Gβγ to the(More)
G protein-gated inwardly rectifying potassium channel (GIRK) plays a crucial role in regulating heart rate and neuronal excitability. The gating of GIRK is regulated by the association and dissociation of G protein βγ subunits (Gβγ), which are released from pertussis toxin-sensitive G protein α subunit (Gα(i/o)) upon GPCR activation in vivo. Several lines(More)
Transcriptional regulation is coupled with numerous intracellular signaling processes often mediated by second messengers. Now, growing evidence points to the importance of Ca(2+), one of the most versatile second messengers, in activating or inhibiting gene transcription through actions frequently mediated by members of the EF-hand superfamily of(More)
DREAM (calsenilin/KChIP3) is an EF-hand calcium-binding protein that represses transcription of prodynorphin and c-fos genes. Here we present structural and binding studies on single-site mutants of DREAM designed to disable Ca(2+) binding to each of the functional EF-hands (EF-2: D150N; EF-3: E186Q; and EF-4: E234Q). Isothermal titration calorimetry (ITC)(More)
The inwardly rectifying potassium channel (Kir) regulates resting membrane potential, K+ homeostasis, heart rate, and hormone secretion. The outward current is blocked in a voltage-dependent manner, upon the binding of intracellular polyamines or Mg2+ to the transmembrane pore domain. Meanwhile, electrophysiological studies have shown that mutations of(More)
KcsA is a prokaryotic pH-dependent potassium (K) channel. Its activation, by a decrease in the intracellular pH, is coupled with its subsequent inactivation, but the underlying mechanisms remain elusive. Here, we have investigated the conformational changes and equilibrium of KcsA by using solution NMR spectroscopy. Controlling the temperature and pH of(More)