Learn More
Two modes of plant immunity against biotrophic pathogens, Effector Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI), are triggered by recognition of pathogen effectors and Microbe-Associated Molecular Patterns (MAMPs), respectively. Although the jasmonic acid (JA)/ethylene (ET) and salicylic acid (SA) signaling sectors are generally(More)
Salicylic acid (SA)-induced defense responses are important factors during effector triggered immunity and microbe-associated molecular pattern (MAMP)-induced immunity in plants. This article presents evidence that a member of the Arabidopsis CBP60 gene family, CBP60g, contributes to MAMP-triggered SA accumulation. CBP60g is inducible by both pathogen and(More)
Plants respond to pathogen infection using an innate immune system with at least two distinct recognition mechanisms. One mechanism recognizes microbe-associated molecular patterns (MAMPs). The other is based on resistance (R) genes and specifically recognizes certain pathogen virulence factors, including those delivered through the type III secretion(More)
To clarify the processes involved in plant immunity, we have isolated and characterized a single recessive Arabidopsis mutant, cad1 (constitutively activated cell death 1), which shows a phenotype that mimics the lesions seen in the hypersensitive response (HR). This mutant shows spontaneously activated expression of pathogenesis-related (PR) genes, and(More)
RNA-binding proteins (RBP) can control gene expression at both transcriptional and post-transcriptional levels. Plants respond to pathogen infection with rapid reprogramming of gene expression. However, little is known about how plant RBP function in plant immunity. Here, we describe the involvement of an RBP, Arabidopsis thaliana RNA-binding(More)
Biological signaling processes may be mediated by complex networks in which network components and network sectors interact with each other in complex ways. Studies of complex networks benefit from approaches in which the roles of individual components are considered in the context of the network. The plant immune signaling network, which controls inducible(More)
Network robustness is a crucial property of the plant immune signaling network because pathogens are under a strong selection pressure to perturb plant network components to dampen plant immune responses. Nevertheless, modulation of network robustness is an area of network biology that has rarely been explored. While two modes of plant immunity,(More)
Natural variation in gene expression (expression traits or e-traits) is increasingly used for the discovery of genes controlling traits. An important question is whether a particular e-trait is correlated with a phenotypic trait. Here, we examined the correlations between phenotypic traits and e-traits among 10 Arabidopsis thaliana accessions. We studied(More)
Plants are closely associated with microorganisms including pathogens and mutualists that influence plant fitness. Molecular genetic approaches have uncovered a number of signaling components from both plants and microbes and their mode of actions. However, signaling pathways are highly interconnected and influenced by diverse sets of environmental factors.(More)