Masanaka Sugiyama

Learn More
Stimulation of Toll-like receptors (TLRs) triggers activation of a common MyD88-dependent signaling pathway as well as a MyD88-independent pathway that is unique to TLR3 and TLR4 signaling pathways leading to interferon (IFN)-beta production. Here we disrupted the gene encoding a Toll/IL-1 receptor (TIR) domain-containing adaptor, TRIF. TRIF-deficient mice(More)
We previously reported a new Toll/IL-1R (TIR)-containing molecule, named TIR domain-containing adaptor inducing IFN-beta (TRIF). Although initial study indicated that TRIF possesses the ability to activate not only the NF-kappaB-dependent but also the IFN-beta promoters, the molecular mechanisms of TRIF-induced signaling are poorly understood. In this(More)
Plasmacytoid dendritic cells (pDCs), originating from hematopoietic progenitor cells in the BM, are a unique dendritic cell subset that can produce large amounts of type I IFNs by signaling through the nucleic acid-sensing TLR7 and TLR9 (TLR7/9). The molecular mechanisms for pDC function and development remain largely unknown. In the present study, we(More)
Dendritic cells (DCs) consist of various subsets that play crucial roles in linking innate and adaptive immunity. In the murine spleen, CD8α(+) DCs exhibit a propensity to ingest dying/dead cells, produce proinflammatory cytokines, and cross-present Ags to generate CD8(+) T cell responses. To track and ablate CD8α(+) DCs in vivo, we generated XCR1-venus and(More)
Intestinal immune homeostasis requires dynamic crosstalk between innate and adaptive immune cells. Dendritic cells (DCs) exist as multiple phenotypically and functionally distinct sub-populations within tissues, where they initiate immune responses and promote homeostasis. In the gut, there exists a minor DC subset defined as CD103(+)CD11b(-) that also(More)
  • 1