Learn More
LIS1 was first identified as a gene mutated in human classical lissencephaly sequence. LIS1 is required for dynein activity, but the underlying mechanism is poorly understood. Here, we demonstrate that LIS1 suppresses the motility of cytoplasmic dynein on microtubules (MTs), whereas NDEL1 releases the blocking effect of LIS1 on cytoplasmic dynein. We(More)
NDEL1 is a binding partner of LIS1 that participates in the regulation of cytoplasmic dynein function and microtubule organization during mitotic cell division and neuronal migration. NDEL1 preferentially localizes to the centrosome and is a likely target for cell cycle-activated kinases, including CDK1. In particular, NDEL1 phosphorylation by CDK1(More)
LIS1 and NDEL1 are known to be essential for the activity of cytoplasmic dynein in living cells. We previously reported that LIS1 and NDEL1 directly regulated the motility of cytoplasmic dynein in an in vitro motility assay. LIS1 suppressed dynein motility and inhibited the translocation of microtubules (MTs), while NDEL1 dissociated dynein from MTs and(More)
Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. LIS1 (official symbol PAFAH1B1, for platelet-activating factor acetylhydrolase, isoform 1b, subunit 1) was identified as the gene mutated in individuals with lissencephaly, and it was found to regulate cytoplasmic dynein function and localization. Here we show that(More)
Orchestrated remodelling of the cytoskeketon is prominent during neurite extension. In contrast with the extensive characterization of actin filament regulation, little is known about the dynamics of microtubules during neurite extension. Here we identify an atypical protein kinase C (aPKC)-Aurora A-NDEL1 pathway that is crucial for the regulation of(More)
The cytosolic nuclear transport factor p10/NTF2 is required for the translocation of karyophilic molecules through nuclear pores [1] [2] [3], and the small GTPase Ran is a key regulator of protein transport between the nucleus and cytoplasm [4] [5]. It has been reported that p10/NTF2 interacts directly and specifically with Ran-GDP but not with Ran-GTP [6].(More)
Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. The LIS1 (or PAFAH1B1) gene was identified as the gene mutated in lissencephaly patients, and was found to regulate cytoplasmic dynein function and localization. In particular, LIS1 is essential for anterograde transport of cytoplasmic dynein as a part of the(More)
Lissencephaly is a devastating neurological disorder caused by to defective neuronal migration. LIS1 (or PAFAH1B1), the gene mutated in lissencephaly patients and its binding protein NDEL1 were found to regulate cytoplasmic dynein function and localization. LIS1 and NDEL1 also play a pivotal role on a microtubule regulation and determination of cell(More)
Reactive oxygen species induce oxidative damage in DNA precursors, i.e. dNTPs, leading to point mutations upon incorporation. Escherichia coli mutT strains, deficient in the activity hydrolysing 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP), display more than a 100-fold higher spontaneous mutation frequency over the wild-type strain.(More)
Two c-type cytochromes from the soluble fraction of a deep-sea moderately piezophilic bacterium, Shewanella violacea, were purified and characterized, and the genes coding for these cytochromes were cloned and sequenced. One of the cytochromes, designated cytochrome c(A), was found to have a molecular mass of approximately 8.3 kDa, and it contained one heme(More)