Masami Tatsuno

Learn More
As previously shown in the hippocampus and other brain areas, patterns of firing-rate correlations between neurons in the rat medial prefrontal cortex during a repetitive sequence task were preserved during subsequent sleep, suggesting that waking patterns are reactivated. We found that, during sleep, reactivation of spatiotemporal patterns was coherent(More)
Spontaneous reactivation of previously stored patterns of neural activity occurs in hippocampus and neocortex during non-rapid eye movement (NREM) sleep. Notable features of the neocortical local field potential during NREM sleep are high-amplitude, low-frequency thalamocortical oscillations including K-complexes, low-voltage spindles, and high-voltage(More)
Replay of behaviorally induced neural activity patterns during subsequent sleep has been suggested to play an important role in memory consolidation. Many previous studies, mostly involving familiar experiences, suggest that such reactivation occurs, but decays quickly (approximately 1 h). Recently, however, long-lasting (up to approximately 48 h)(More)
Navigation requires coordination of egocentric and allocentric spatial reference frames and may involve vectorial computations relative to landmarks. Creation of a representation of target heading relative to landmarks could be accomplished from neurons that encode the conjunction of egocentric landmark bearings with allocentric head direction. Landmark(More)
Characterization of synaptic connectivity is essential to understanding neural circuit dynamics. For extracellularly recorded spike trains, indirect evidence for connectivity can be inferred from short-latency peaks in the correlogram between two neurons. Despite their predominance in cortex, however, significant interactions between excitatory neurons (E)(More)
We theoretically investigate long-term potentiation (LTP) in the hippocampus using a simple model of a neuron stimulated by three different time-structured input signals (regular, Markov, and chaotic). The synaptic efficacy change is described taking into account both N-methyl-D-aspartate (NMDA) and non-NMDA receptors. The experimental results are(More)
When rodents engage in irregular foraging in an open-field environment, hippocampal principal cells exhibit place-specific firing that is statistically independent of the direction of traverse through the place field. When the path is restricted to a track, however, in-field rates differ substantially in opposite directions. Frequently, the representations(More)
Transcranial direct current stimulation (tDCS) is a promising technique to treat a wide range of neurological conditions including stroke. The pathological processes following stroke may provide an exemplary system to investigate how tDCS promotes neuronal plasticity and functional recovery. Changes in synaptic function after stroke, such as reduced(More)
1. The 'Cyborg Drive' Recording Technology Following the first generation 'Warp Drive' that holds 144 single micro-electrodes (Hoffman and McNaughton, 2002; Battaglia et al., 2004), the 'Cyborg' Drive was developed in collaboration with Neuralynx, Inc. (Tucson, AZ). The Cyborg Drive holds 240 electrodes in a 12x20 array with 675 micron spacing between(More)
Information geometry has been suggested to provide a powerful tool for analyzing multineuronal spike trains. Among several advantages of this approach, a significant property is the close link between information-geometric measures and neural network architectures. Previous modeling studies established that the first- and second-order information-geometric(More)