Learn More
As previously shown in the hippocampus and other brain areas, patterns of firing-rate correlations between neurons in the rat medial prefrontal cortex during a repetitive sequence task were preserved during subsequent sleep, suggesting that waking patterns are reactivated. We found that, during sleep, reactivation of spatiotemporal patterns was coherent(More)
Replay of behaviorally induced neural activity patterns during subsequent sleep has been suggested to play an important role in memory consolidation. Many previous studies, mostly involving familiar experiences, suggest that such reactivation occurs, but decays quickly (approximately 1 h). Recently, however, long-lasting (up to approximately 48 h)(More)
Navigation requires coordination of egocentric and allocentric spatial reference frames and may involve vectorial computations relative to landmarks. Creation of a representation of target heading relative to landmarks could be accomplished from neurons that encode the conjunction of egocentric landmark bearings with allocentric head direction. Landmark(More)
Spontaneous reactivation of previously stored patterns of neural activity occurs in hippocampus and neocortex during non-rapid eye movement (NREM) sleep. Notable features of the neocortical local field potential during NREM sleep are high-amplitude, low-frequency thalamocortical oscillations including K-complexes, low-voltage spindles, and high-voltage(More)
Characterization of synaptic connectivity is essential to understanding neural circuit dynamics. For extracellularly recorded spike trains, indirect evidence for connectivity can be inferred from short-latency peaks in the correlogram between two neurons. Despite their predominance in cortex, however, significant interactions between excitatory neurons (E)(More)
Transcranial direct current stimulation (tDCS) is a promising technique to treat a wide range of neurological conditions including stroke. The pathological processes following stroke may provide an exemplary system to investigate how tDCS promotes neuronal plasticity and functional recovery. Changes in synaptic function after stroke, such as reduced(More)
To investigate maturational change in the susceptibility of voltage-dependent calcium (Ca2+) channels (VDCC) in the brain to excessive depolarization, which is likely to occur during hypoxia or ischemia, we studied depolarization-induced increases in Ca2+ concentration in cortical synaptosomes ([Ca2+]i) obtained from young (8, 15, 22, 36, and 43-day-old)(More)
Information geometry has been suggested to provide a powerful tool for analyzing multineuronal spike trains. Among several advantages of this approach, a significant property is the close link between information-geometric measures and neural network architectures. Previous modeling studies established that the first- and second-order information-geometric(More)
When rodents engage in irregular foraging in an open-field environment, hippocampal principal cells exhibit place-specific firing that is statistically independent of the direction of traverse through the place field. When the path is restricted to a track, however, in-field rates differ substantially in opposite directions. Frequently, the representations(More)
A novel analytical method based on information geometry was recently proposed, and this method may provide useful insights into the statistical interactions within neural groups. The link between informationgeometric measures and the structure of neural interactions has not yet been elucidated, however, because of the ill-posed nature of the problem. Here,(More)