Masaki Shiota

Learn More
Defining the mechanisms underlying metastatic progression of prostate cancer may lead to insights into how to decrease morbidity and mortality in this disease. An important determinant of metastasis is epithelial-to-mesenchymal transition (EMT), and the mechanisms that control the process of EMT in cancer cells are still emerging. Here, we report that the(More)
YB-1 controls gene expression through both transcriptional and translational mechanisms and is involved in various biological activities such as brain development, chemoresistance, and tumor progression. We have previously shown that YB-1 is overexpressed in cisplatin-resistant cells and is involved in resistance against DNA-damaging agents. Structural(More)
The androgen receptor (AR) is well known to play a central role in the pathogenesis of prostate cancer (PCa). In several studies, AR was overexpressed in castration-resistant PCa (CRPC). However, the mechanism of AR overexpression in CRPC is not fully elucidated. Y-box binding protein-1 (YB-1) is a pleiotropic transcription factor that is upregulated in(More)
Few effective therapies exist for the treatment of castration-resistant prostate cancer (CRPC). Recent evidence suggests that CRPC may be caused by augmented androgen/androgen receptor (AR) signaling, generally involving AR overexpression. Aberrant androgen/AR signaling associated with AR overexpression also plays a key role in prostate carcinogenesis.(More)
PURPOSE There are several reports of androgen receptor in bladder cancer cases but androgen receptor expression and the function of androgen/androgen receptor signaling in bladder cancer remain unclear. We investigated androgen receptor expression and the role of androgen/androgen receptor signaling in bladder cancer. MATERIALS AND METHODS We evaluated AR(More)
Although invasive and metastatic progression via the epithelial-mesenchymal transition (EMT) and acquisition of resistance to castration are both critical steps in prostate cancer, the molecular mechanism of this interaction remains unclear. In this study, we aimed to elucidate the interaction of signaling between castration resistance and EMT, and to apply(More)
PURPOSE Granulomas resulting from the administration of luteinizing hormone-releasing hormone analogues (LH-RH analogues) are thought to be very rare. We report on our clinical experience with injection-site granulomas that result from the administration of LH-RH analogues, and we evaluate the incidence rate of these granulomas. MATERIALS AND METHODS We(More)
Historically, androgen-deprivation therapy (ADT) was the only primary treatment for metastatic prostate cancer. After prostate cancer develops into castration-resistant prostate cancer (CRPC), there are a few life-prolonging drugs, including taxanes, such as docetaxel and cabazitaxel, as well as novel androgen receptor-targeting agents, such as abiraterone(More)
Clusterin (CLU) is cytoprotective molecular chaperone that is highly expressed in castrate-resistant prostate cancer (CRPC). CRPC is also characterized by increased insulin-like growth factor (IGF)-I responsiveness which induces prostate cancer survival and CLU expression. However, how IGF-I induces CLU expression and whether CLU is required for(More)
TGF-β promotes epithelial-mesenchymal transition (EMT) and induces clusterin (CLU) expression, linking these genes to cancer metastasis. CLU is a pleiotropic molecular chaperone that confers survival and proliferative advantage to cancer cells. However, the molecular mechanisms by which TGF-β regulates CLU expression and CLU affects metastasis remain(More)