Masaki Satoh

Learn More
The complete nucleotide sequence (501,020 bp) of the mitochondrial genome from cytoplasmic male-sterile (CMS) sugar beet was determined. This enabled us to compare the sequence with that previously published for the mitochondrial genome of normal, male-fertile sugar beet. The comparison revealed that the two genomes have the same complement of genes of(More)
A new type of ultra-high resolution atmospheric global circulation model is developed. The new model is designed to perform ‘‘cloud resolving simulations’’ by directly calculating deep convection and meso-scale circulations, which play key roles not only in the tropical circulations but in the global circulations of the atmosphere. Since cores of deep(More)
A Madden-Julian Oscillation (MJO) is a massive weather event consisting of deep convection coupled with atmospheric circulation, moving slowly eastward over the Indian and Pacific Oceans. Despite its enormous influence on many weather and climate systems worldwide, it has proven very difficult to simulate an MJO because of assumptions about cumulus clouds(More)
High-resolution global simulations over zonally symmetric aqua planets are examined using Fourier analysis in the zonal direction. We highlight the tropics, where the large-scale weather consists of convectively-coupled waves so that explicit convection is an especially topical novelty. Squared differences between pairs of runs grow from initially tiny(More)
This study discloses detailed Madden–Julian oscillation (MJO) characteristics in the two 30-day integrations of the global cloud-system-resolving Nonhydrostatic Icosahedral Atmospheric Model (NICAM) using the allseason real-time multivariate MJO index of Wheeler and Hendon. The model anomaly is derived by excluding the observed climatology because the(More)
Global cloud/cloud system-resolving models are perceived to perform well in the prediction of the Madden-Julian Oscillation (MJO), a huge eastward -propagating atmospheric pulse that dominates intraseasonal variation of the tropics and affects the entire globe. However, owing to model complexity, detailed analysis is limited by computational power. Here we(More)
Citation Emanuel, Kerry, Oouchi, Kazuyoshi, Satoh, Masaki, Tomita, Hirofumi, AND Yamada, Yohei. "Comparison of Explicitly Simulated and Downscaled Tropical Cyclone Activity in a HighResolution Global Climate Model" Journal of Advances in Modeling Earth Systems [Online] Volume 2 Number 9 (11 October 2010)©2010 American Geophysical Union As Published(More)