Learn More
The eukaryotic biological clock involves a negative transcription-translation feedback loop in which clock genes regulate their own transcription and that of output genes of metabolic significance. While around 10% of the liver transcriptome is rhythmic, only about a fifth is driven by de novo transcription, indicating mRNA processing is a major circadian(More)
Dysregulation of iron metabolism has been observed in patients with neurodegenerative diseases (NDs). Utilization of several importers and exporters for iron transport in brain cells helps maintain iron homeostasis. Dysregulation of iron homeostasis leads to the production of neurotoxic substances and reactive oxygen species, resulting in iron-induced(More)
Stress-inducible transcription factors play a pivotal role in cellular adaptation to environment to maintain homeostasis and integrity of the genome. Activating transcription factor 3 (ATF3) is induced by a variety of stress and inflammatory conditions and is over-expressed in many kinds of cancer cells. However, molecular mechanisms underlying pleiotropic(More)
Activating transcription factor (ATF) 3 plays a role in determining cell fate and generates a variety of alternatively spliced isoforms in stress response. We have reported previously that splice variant ATF3deltaZip2, which lacks the leucine zipper region, is induced in response to various stress stimuli. However, its biological function has not been(More)
The c-myc proto-oncogene encodes a transcription factor that promotes cell cycle progression and cell proliferation, and its deficiency results in severely retarded proliferation rates. The ATF3 stress response gene encodes a transcription factor that plays a role in determining cell fate under stress conditions. Its biological significance in the control(More)
The tumor microenvironment can enhance the invasive capacity of tumor cells. We showed that expression of angiopoietin-like protein 2 (ANGPTL2) in osteosarcoma (OS) cell lines increased and the methylation of its promoter decreased with time when grown as xenografts in mice compared with culture. Compared with cells grown in normal culture conditions, the(More)
We partially characterized the transferrin-independent iron uptake (Tf-IU) of neuronal and glial cells in the previous report. In the present study, we further examined a mechanism of which glial cells protect neuronal cells against iron stress using neuron-microglia (N-MG) and neuron-astrocyte (N-AS) co-cultures. When each solely purified cell was treated(More)
Angiopoietin-like protein 2 (ANGPTL2) plays an important role in inflammatory carcinogenesis and tumor metastasis by activating tumor angiogenesis and tumor cell chemotaxis and invasiveness. However, it is unclear whether ANGPTL2 expression has an effect on tumor cell survival. Here, we explored that possibility by determining whether ANGPTL2 expression(More)
SUMMARY BioCichlid is a 3D visualization system of time-course microarray data on molecular networks, aiming at interpretation of gene expression data by transcriptional relationships based on the central dogma with physical and genetic interactions. BioCichlid visualizes both physical (protein) and genetic (regulatory) network layers, and provides(More)
Bone metastasis of breast cancer cells is a major concern, as it causes increased morbidity and mortality in patients. Bone tissue-derived CXCL12 preferentially recruits breast cancer cells expressing CXCR4 to bone metastatic sites. Thus, understanding how CXCR4 expression is regulated in breast cancer cells could suggest approaches to decrease bone(More)