Learn More
Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs 1-4). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes.(More)
—In this paper, a reconfigurable LSI employing a non-volatile nanometer-scale switch, NanoBridge, is proposed, and its basic operations are demonstrated. The switch, composed of solid electrolyte copper sulfide, has a 30-nm contact diameter and 100-on-resistance. Because of its small size, it can be used to create extremely dense field-programmable logic(More)
Atomic switch networks (ASNs) have been shown to generate network level dynamics that resemble those observed in biological neural networks. To facilitate understanding and control of these behaviors, we developed a numerical model based on the synapse-like properties of individual atomic switches and the random nature of the network wiring. We validated(More)
Recent advances in the neuromorphic operation of atomic switches as individual synapse-like devices demonstrate the ability to process information with both short-term and long-term memorization in a single two terminal junction. Here it is shown that atomic switches can be self-assembled within a highly interconnected network of silver nanowires similar in(More)
Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate(More)
A compact neuromorphic nanodevice with inherent learning and memory properties emulating those of biological synapses is the key to developing artificial neural networks rivaling their biological counterparts. Experimental results showed that memorization with a wide time scale from volatile to permanent can be achieved in a WO3-x-based nanoionics device(More)