Masahiro Yukawa

Learn More
This paper exemplifies that the use of multiple kernels leads to efficient adaptive filtering for nonlinear systems. Two types of multikernel adaptive filtering algorithms are proposed. One is a simple generalization of the kernel normalized least mean square (KNLMS) algorithm [2], adopting a coherence criterion for dictionary designing. The other is(More)
This paper proposes a novel adaptive filtering scheme named the Krylov-proportionate normalized least-mean-square (KPNLMS) algorithm. KPNLMS exploits the benefits (i.e., fast convergence for sparse unknown systems) of the proportionate NLMS algorithm, but its applications are not limited to sparse unknown systems. A set of orthonormal basis vectors is(More)
The adaptive parallel subgradient projection (PSP) algorithm was proposed in 2002 as a set-theoretic adaptive filtering algorithm providing fast and stable convergence, robustness against noise, and low computational complexity by using weighted parallel projections onto multiple time-varying closed half-spaces. In this paper, we present a novel weighting(More)
In this paper, we propose a novel reduced-rank adaptive filtering algorithm exploiting the Krylov subspace associated with estimates of certain statistics of input and output signals. We point out that, when the estimated statistics are erroneous (e.g., due to sudden changes of environments), the existing Krylov-subspace-based reduced-rank methods compute(More)
This paper proposes a fast converging adaptive filtering algorithm named Krylov-proportionate normalized least mean-square (KPNLMS) by extending the proportionate normalized least mean square (PNLMS) algorithm. PNLMS is known to exhibit faster convergence than the standard NLMS algorithm for sparse unknown systems. The proposed algorithm attains similar(More)
In this paper, we propose a novel adaptive filtering algorithm based on an iterative use of (i) the proximity operator and (ii) the parallel variable-metric projection. Our time-varying cost function is a weighted sum of squared distances (in a variable-metric sense) plus a possibly nonsmooth penalty term, and the proposed algorithm is derived along the(More)
This paper proposes a robust reduced-rank scheme for adaptive beamforming based on joint iterative optimization (JIO) of adaptive filters. The novel scheme is designed according to the constant modulus (CM) criterion subject to different constraints. The proposed scheme consists of a bank of full-rank adaptive filters that forms the transformation matrix,(More)
This paper indicates that an appropriate design of metric leads to significant improvements in the adaptive projected subgradient method (APSM), which unifies a wide range of projection-based algorithms [including normalized least mean square (NLMS) and affine projection algorithm (APA)]. The key is to incorporate a priori (or a posteriori) information on(More)
In this paper, coordinated beamforming based on relaxed zero forcing (RZF) for transmitter-receiver pair multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) interference channels is considered. In the RZF coordinated beamforming, conventional zero-forcing interference leakage constraints are relaxed so that some predetermined(More)
In this paper, we propose a novel adaptive filtering algorithm named adaptive parallel variable-metric projection (APVP) algorithm, which includes the proportionate normalized least mean square (PNLMS) algorithm as its special example. The proposed algorithm is based on parallel projection (onto multiple closed convex sets) with time-varying metrics. A(More)