Masahiro Shirakawa

Learn More
DNA methylation of CpG dinucleotides is an important epigenetic modification of mammalian genomes and is essential for the regulation of chromatin structure, of gene expression and of genome stability. Differences in DNA methylation patterns underlie a wide range of biological processes, such as genomic imprinting, inactivation of the X chromosome,(More)
Members of the small ubiquitin-like modifier (SUMO) family can be covalently attached to the lysine residue of a target protein through an enzymatic pathway similar to that used in ubiquitin conjugation, and are involved in various cellular events that do not rely on degradative signalling via the proteasome or lysosome. However, little is known about the(More)
Myeloid differentiating factor 88 (MyD88) and MyD88 adaptor-like (Mal) are adaptor molecules critically involved in the Toll-like receptor (TLR) 4 signaling pathway. While Mal has been proposed to serve as a membrane-sorting adaptor, MyD88 mediates signal transduction from activated TLR4 to downstream components. The Toll/Interleukin-1 receptor (TIR) domain(More)
In vertebrates, the biological consequences of DNA methylation are often mediated by protein factors containing conserved methyl-CpG binding domains (MBDs). Mutations in the MBD protein MeCP2 cause the neurodevelopmental disease Rett syndrome. We report here the solution structure of the MBD of the human methylation-dependent transcriptional regulator MBD1(More)
DNMT3 proteins are de novo DNA methyltransferases that are responsible for the establishment of DNA methylation patterns in mammalian genomes. Here, we have determined the crystal structures of the ATRX-DNMT3-DNMT3L (ADD) domain of DNMT3A in an unliganded form and in a complex with the amino-terminal tail of histone H3. Combined with the results of(More)
The ubiquitin-associated (UBA) domain is one of the most frequently occurring motifs that recognize ubiquitin tags. Dsk2p, a UBA-containing protein from Saccharomyces cerevisiae, is involved in the ubiquitin-proteasome proteolytic pathway and has been implicated in spindle pole duplication. Here we present the solution structure of the UBA domain of Dsk2p(More)
Chitinase A1 from Bacillus circulans WL-12 comprises an N-terminal catalytic domain, two fibronectin type III-like domains, and a C-terminal chitin-binding domain (ChBD). In order to study the biochemical properties and structure of the ChBD, ChBD(ChiA1) was produced in Escherichia coli using a pET expression system and purified by chitin affinity column(More)
CpG methylation in vertebrates is important for gene silencing, alterations in chromatin structure and genomic stability, and differences in the DNA-methylation status are correlated with imprinting phenomena, carcinogenesis and embryonic development. Methylation signals are interpreted by protein factors that contain shared methyl-CpG-binding domains(More)
Dnmt1 is responsible for the maintenance DNA methylation during replication to propagate methylation patterns to the next generation. The replication foci targeting sequence (RFTS), which plugs the catalytic pocket, is necessary for recruitment of Dnmt1 to the replication site. In the present study we found that the DNA methylation activity of Dnmt1 was DNA(More)
Multiprotein bridging factor 1 (MBF1) is a coactivator which mediates transcriptional activation by interconnecting the general transcription factor TATA element-binding protein and gene-specific activators such as the Drosophila nuclear receptor FTZ-F1 or the yeast basic leucine zipper protein GCN4. The human homolog of MBF1 (hMBF1) has been identified but(More)