Masahiro Inagaki

Learn More
Naphthalenesulfonamides such as N-(6-amino-hexyl)-5-chloro-1-naphthalenesulfonamide (W-7) are potent calmodulin (CaM) antagonists and act upon several protein kinases at higher concentration. When the naphthalene ring was replaced by isoquinoline, the derivatives were no longer CaM antagonists but retained the ability to inhibit protein kinases, and some of(More)
Cyclin-dependent kinases (cdk) play an essential role in the intracellular control of the cell division cycle (cdc). These kinases and their regulators are frequently deregulated in human tumours. Enzymatic screening has recently led to the discovery of specific inhibitors of cyclin-dependent kinases, such as butyrolactone I, flavopiridol and the purine(More)
Inositol phospholipid turnover is enhanced during mitogenic stimulation of cells by growth factors and the breakdown of phosphatidylinositol 4,5-bisphosphate (PtdInsP2) may be important in triggering cell proliferation. PtdInsP2 also binds actin-binding proteins to regulate their activity, but it is not yet understood how this control is achieved. The(More)
We found that vimentin, the most widely expressed intermediate filament protein, served as an excellent substrate for Rho-associated kinase (Rho-kinase) and that vimentin phosphorylated by Rho-kinase lost its ability to form filaments in vitro. Two amino-terminal sites on vimentin, Ser38 and Ser71, were identified as the major phosphorylation sites for(More)
Although accumulating data reveal patterns of proliferation, migration, and differentiation of neuronal lineage cells in the developing brain, gliogenesis in the brain has not been well elucidated. In the rat brain, vimentin is selectively expressed in radial glia and in their progeny, not in oligodendrocytes or neurons from embryonic day 15 (E15) until(More)
Intermediate filaments are a major component of the cytoskeleton of eukaryotic cells. Although there appear to be at least five distinct classes of these filaments, cells of mesenchymal origin and most cells in culture contain the intermediate filament composed of the subunit protein vimentin. Vimentin exists in a nonphosphorylated as well as in a(More)
To analyze the cell cycle-dependent desmin phosphorylation by Rho kinase, we developed antibodies specifically recognizing the kinase-dependent phosphorylation of desmin at Thr-16, Thr-75, and Thr-76. With these antibodies, phosphorylation of desmin was observed specifically at the cleavage furrow in late mitotic Saos-2 cells. We then found that treatment(More)
The small GTPase Rho and one of its targets, Rho-kinase (also termed ROK or ROCK), are implicated in various cellular functions including stress fiber formation, smooth muscle contraction, tumor cell invasion and cell motility. We have previously reported that Rho-kinase accumulates at the cleavage furrow during cytokinesis in several cultured cells. Here,(More)
Glial fibrillary acidic protein (GFAP), the intermediate filament component of astroglial cells, can serve as an excellent substrate for both cAMP-dependent protein kinase and protein kinase C, in vitro. GFAP phosphorylated by each protein kinase does not polymerize, and the filaments that do polymerize tend to depolymerize after phosphorylation.(More)
In vivo central effects of some dopamine uptake inhibitors were evaluated in both brain microdialysis and behavioural studies in rats, and compared with their in vitro affinities to dopamine uptake sites. IC50 values of GBR12909 (1-[2- bis(4-fluorophenyl)methoxy]ethyl]-4-(3- phenylpropyl)piperazine), diclofensine, mazindol, amfonelic acid and nomifensine(More)