Masahiro Hirai

Learn More
In order to clarify the neural dynamics involved in the perception of biological motion, we recorded event-related potentials from 12 subjects. The subjects were shown biological motion or scrambled motion as a control stimulus. In the scrambled motion, each point had the same velocity vector as in the biological motion, but the initial starting positions(More)
To clarify the dynamical processing aspect of biological motion (BM) perception from a developmental point of view, we measured event-related potentials (ERPs) in 8-month-old infants during the perception of BM or a scrambled motion (SM; randomization of BM's spatial structure). We found that activation of the right hemisphere in 8-month-old infants was(More)
The purpose of this study was to measure event-related potentials (ERPs) to clarify how attention affects neural activity during the visual perception of biological motion (BM). Thirteen healthy subjects observed BM or scrambled motion (SM). For SM, each point had the same velocity vector as in BM, but the initial starting positions were randomized. Each BM(More)
We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and scrambled(More)
BACKGROUND The neural system of our closest living relative, the chimpanzee, is a topic of increasing research interest. However, electrophysiological examinations of neural activity during visual processing in awake chimpanzees are currently lacking. METHODOLOGY/PRINCIPAL FINDINGS In the present report, skin-surface event-related brain potentials (ERPs)(More)
To investigate the neural response to detection of biological motion (BM) surrounded by distractors, event-related potentials (ERPs) were recorded. Scrambled motion with the same velocity vector as the BM but randomized initial starting points was used as the distractor. The number of distractors was varied to control the difficulty of the task. The(More)
Do we perceive humanoid robots as human beings? Recent neuroimaging studies have reported similarity in the neural processing of human and robot actions in the superior temporal sulcus area but a differential neural response in the premotor area. These studies suggest that the neural activity of the occipitotemporal region would not be affected by(More)
To clarify the neural dynamics in human motor imitation, we examined event-related potentials (ERP) for a reaction time task that required responses to an actor's finger motions with identical motions. Compared with a control task (reaction to an LED illumination), the ERP surface topography in the imitative reaction was differentiated at around 120-200 ms(More)
Recent studies have reported similarity in the neural processing of human and robot actions; however, whether this is the case remains controversial. Here, we examined this controversy using the inversion effect, a phenomenon whereby an upright face-and body-sensitive event-related potential component is enhanced and delayed in response to an inverted face(More)
  • 1