Masahiko Sawada

Learn More
BACKGROUND AND PURPOSE Poly(ADP-ribose) polymerase (PARP-1; Enzyme Commission 2.4.30) is a nuclear DNA repair enzyme that mediates early neuronal ischemic injury. Using novel 3-dimensional, fast spin-echo-based diffusion-weighted imaging, we compared acute (21 hours) and long-term (3 days) ischemic volume after middle cerebral artery (MCA) occlusion in(More)
Cardiac arrest is associated with high mortality and poor neurological outcome. We characterized functional and histological outcome in a novel mouse model of cardiac arrest and cardiopulmonary resuscitation (CPR) in order to study neuroprotective mechanisms. Cardiac arrest was induced in male C57Bl/6 and 129SVEV mice by i.v. injection of KCl. After 10 min(More)
MRI studies using mouse brain models of ischemia are becoming a valuable tool for understanding the mechanism of stroke, since transgenic models are now available. However, the small size of the mouse brain and the surgical complexity of creating ischemia in mice make it technically challenging to obtain high-quality MRI data. Therefore, there are few(More)
BACKGROUND AND PURPOSE final sigma-Receptor ligands ameliorate ischemic neuronal injury and modulate neuronal responses to N-methyl-D-aspartate (NMDA) receptor stimulation. Because NMDA-evoked synthesis of nitric oxide (NO) may play an important role in excitotoxic-mediated injury, we tested the hypothesis that final sigma-receptor ligands attenuate basal(More)
Background and Purpose—Activators of peroxisome proliferator-activated receptor-␥ (PPAR␥), a member of the PPAR family, increase levels of CuZn-superoxide dismutase (SOD) in cultured endothelium, suggesting a mechanism by which it may exert its protective effect within the brain. These properties raise the question of whether a PPAR␥ agonist may be(More)
  • 1