Learn More
Muscle cells respond to mechanical stretch stimuli by triggering downstream signals for myocyte growth and survival. The molecular components of the muscle stretch sensor are unknown, and their role in muscle disease is unclear. Here, we present biophysical/biochemical studies in muscle LIM protein (MLP) deficient cardiac muscle that support a selective(More)
KChIP2, a gene encoding three auxiliary subunits of Kv4.2 and Kv4.3, is preferentially expressed in the adult heart, and its expression is downregulated in cardiac hypertrophy. Mice deficient for KChIP2 exhibit normal cardiac structure and function but display a prolonged elevation in the ST segment on the electrocardiogram. The KChIP2(-/-) mice are highly(More)
Dilated cardiomyopathy and end-stage heart failure result in multiple defects in cardiac excitation-contraction coupling. Via complementation of a genetically based mouse model of dilated cardiomyopathy, we now provide evidence that progressive chamber dilation and heart failure are dependent on a Ca2+ cycling defect in the cardiac sarcoplasmic reticulum.(More)
Because cell shape and alignment, cell-matrix adhesion, and cell-cell contact can all affect growth, and because mechanical strains in vivo are multiaxial and anisotropic, we developed an in vitro system for engineering aligned, rod-shaped, neonatal cardiac myocyte cultures. Photolithographic and microfluidic techniques were used to micropattern(More)
Small GTPase Rho and its target Rho-kinase/ROK/ROCK play an important role in various cellular functions, including smooth muscle contraction, actin cytoskeleton organization, and cell adhesion and migration, all of which may be involved in the pathogenesis of arteriosclerosis. Here, we show that adenovirus-mediated transfer of dominant-negative Rho-kinase(More)
A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast(More)
Triggered release of Ca2+ from an individual sarcoplasmic reticulum (SR) Ca(2+) release unit (CRU) is the fundamental event of cardiac excitation–contraction coupling, and spontaneous release events (sparks) are the major contributor to diastolic Ca(2+) leak in cardiomyocytes. Previous model studies have predicted that the duration and magnitude of the(More)
The t-tubules of mammalian ventricular myocytes are invaginations of the cell membrane that occur at each Z-line. These invaginations branch within the cell to form a complex network that allows rapid propagation of the electrical signal, and hence synchronous rise of intracellular calcium (Ca(2+)). To investigate how the t-tubule microanatomy and the(More)
BACKGROUND One of the most important problems in developing in vivo cardiac gene transfer has been low transfection efficiency. A novel in vivo technique was developed, tested in normal hamsters, and the feasibility of restoring a deficient structural protein (delta-sarcoglycan) in the cardiomyopathic (CM) hamster evaluated. METHODS AND RESULTS Adenoviral(More)