Learn More
Charcot first described amyotrophic lateral sclerosis (ALS) in 1869; however, its causes remain largely unknown and effective, long-term treatment strategies are not available. The first mouse model of ALS was developed after the identification of mutations in the superoxide dismutase 1 (SOD1) gene in 1993, and accordingly most of our knowledge of the(More)
Pathological events are well characterized in amyotrophic lateral sclerosis (ALS) mouse models, but review of the literature fails to identify a specific initiating event that precipitates disease pathology. There is now growing consensus in the field that axon and synapses are first cellular sites of degeneration, but controversy exists over whether axon(More)
The precise function of ryanodine receptors (RyRs) in synaptic transmission is unknown, but three of their subtypes are expressed in the brain. We examined the roleof RyRs in excitatory synaptic transmission in hippocampal slices, using type 3 RyR (RyR3)-deficient mice. The alpha-amino-3-hydroxy-5-methyl-4-isoxozolepropionic acid (AMPA) receptor-mediated(More)
The role of Tyr-MIF-1 (Tyr-Pro-Leu-Gly-NH2) in biological responses to stress exposure was examined in mice. Intraperitoneal or intracerebroventricular administration of Tyr-MIF-1 attenuated not only footshock (FS)- and forced swimming (SW)-stress-induced analgesia (SIA) but also socio-psychological (PSY)-SIA that, when using the communication box, is(More)
During development, the rescue of spinal motoneurons as well as sensory neurons in the dorsal root ganglion (DRG) from programmed cell death (PCD) depends on the integrity of peripheral target innervation. Following deletion of the pro-apoptotic gene Bax, both motoneurons and DRG neurons are rescued from PCD. In the present paper, we asked whether different(More)
Runx1-deficient mice die around embryonic day 11.5 due to impaired hematopoiesis. This early death prevents the analysis of the role of Runx1 in the development of sensory ganglia. To overcome the early embryonic lethality, we adopted a new approach to utilize transgenic Runx1-deficient mice in which hematopoietic cells are selectively rescued by Runx1(More)
Sensory neurons in the dorsal root ganglion (DRG) specifically project axons to central and peripheral targets according to their sensory modality. However, the molecular mechanisms that govern sensory neuron differentiation and the axonal projections remain unclear. The Runt-related transcription factors, Runx1 and Runx3, are expressed in DRG neuronal(More)
Prostaglandin (PG) D(2), the most abundant PG in the central nervous system (CNS), is a bioactive lipid having various central actions including sleep induction, hypothermia and modulation of the pain response. We found that centrally administered PGD(2) stimulates food intake via the DP(1) among the two receptor subtypes for PGD(2) in mice. Hypothalamic(More)
Rubiscolin-6 (YPLDLF) is a delta selective opioid peptide isolated from the enzymatic digests of ribulose bisphosphate carboxylase/oxygenase (Rubisco) from spinach leaves. In a step-through type passive avoidance test in ddY mice, rubiscolin-6 enhanced memory consolidation at doses of 3nmol/mouse after intracerebroventricular administration, and at 100mg/kg(More)
The serotonin type 3 (5-HT(3)) receptor is an only ligand-gated ion channel among 14 serotonin receptors. Here, we examined the roles of the 5-HT(3) receptor in the formation of dendrites and axons, using a dissociation culture of embryonic rat cerebral cortex. Cortical neurons at embryonic day 16 were cultured for 4 days in the presence of a selective(More)