Marzena Ciszak

Learn More
The study of electrical network systems, integrated with chemical signaling networks, is becoming a common trend in contemporary biology. Classical techniques are limited to the assessment of signals from doublets or triplets of cells at a fixed temporal bin width. At present, full characteristics of the electrical network distribution and dynamics in plant(More)
We study the regime of anticipated synchronization in unidirectionally coupled model neurons subject to a common external aperiodic forcing that makes their behavior unpredictable. We show numerically and by analog hardware electronic circuits that, under appropriate coupling conditions, the pulses fired by the slave neuron anticipate (i.e., predict) the(More)
We demonstrate experimentally and theoretically the existence of slow chaotic spiking sequences in the dynamics of a semiconductor laser with AC-coupled optoelectronic feedback. The time scale of these dynamics is fully determined by the high-pass filter in the feedback loop and their erratic, though deterministic, nature is evidenced by means of(More)
Interactions between individuals that are guided by simple rules can generate swarming behavior. Swarming behavior has been observed in many groups of organisms, including humans, and recent research has revealed that plants also demonstrate social behavior based on mutual interaction with other individuals. However, this behavior has not previously been(More)
The synchronization in four forced FitzHugh–Nagumo (FHN) systems is studied, both experimentally and by numerical simulations of a model. We show that synchronization may be achieved either by coupling of systems through bidirectional diffusive interactions, by introducing a common noise to all systems or by combining both ingredients, noise and coupling(More)
We present a control method based on two steps: prediction and prevention. For prediction we use the anticipated synchronization scheme, considering unidirectional coupling between excitable systems in a master-slave configuration. The master is the perturbed system to be controlled, meanwhile the slave is an auxiliary system which is used to predict the(More)
The transitions between waking and sleep states are characterized by considerable changes in neuronal firing. During waking, neurons fire tonically at irregular intervals and a desynchronized activity is observed at the electroencephalogram. This activity becomes synchronized with slow wave sleep onset when neurons start to oscillate between periods of(More)
We characterize numerically the regime of anticipated synchronization in the coupled FitzHugh-Nagumo model for neurons. We consider two neurons, coupled unidirectionally (in a master-slave configuration), subject to the same random external forcing and with a recurrent inhibitory delayed connection in the slave neuron. We show that the scheme leads to(More)
This paper reviews our recent work on the synchronization of excitable systems in a master–slave configuration and when the slave system includes a delayed self-coupling term. Particularly, we address the existence of the so-called anticipated synchronization, i.e. a dynamical regime in which the slave system is able to reproduce in advance the evolution of(More)
We analyze the phenomenon of anticipating synchronization of two excitable systems with unidirectional delayed coupling which are subject to the same external forcing. We demonstrate for different paradigms of excitable system that, due to the coupling, the excitability threshold for the slave system is always lower than that for the master. As a(More)