Maryna I. Bodnarchuk

Learn More
† Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 10, CH-8093 Zürich, Switzerland ‡ Laboratory for Thin Films and Photovoltaics, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland § Centre for Sustainable Chemical(More)
The discovery of quasicrystals in 1984 changed our view of ordered solids as periodic structures and introduced new long-range-ordered phases lacking any translational symmetry. Quasicrystals permit symmetry operations forbidden in classical crystallography, for example five-, eight-, ten- and 12-fold rotations, yet have sharp diffraction peaks.(More)
Postsynthetic chemical transformations of colloidal nanocrystals, such as ion-exchange reactions, provide an avenue to compositional fine-tuning or to otherwise inaccessible materials and morphologies. While cation-exchange is facile and commonplace, anion-exchange reactions have not received substantial deployment. Here we report fast, low-temperature,(More)
Lead halide perovskites (CH3NH3PbX3, where X = I, Br) and other metal halide complexes (MX(n), where M = Pb, Cd, In, Zn, Fe, Bi, Sb) have been studied as inorganic capping ligands for colloidal nanocrystals. We present the methodology for the surface functionalization via ligand-exchange reactions and the effect on the optical properties of IV-VI, II-VI,(More)
Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here(More)
We developed different strategies toward the synthesis of colloidal nanocrystals stabilized with molecular metal chalcogenide complexes (MCCs). Negatively charged MCCs, such as SnS(4)(4-), Sn(2)S(6)(4-), SnTe(4)(4-), AsS(3)(3-), MoS(4)(2-), can quantitatively replace the organic ligands at the nanocrystal surface and stabilize nanocrystal solutions in(More)
We report a size-dependent change in the morphology of superlattices self-assembled from monodisperse colloidal PbS nanocrystals. Superlattices of large (>7 nm) PbS nanocrystals showed a strong tendency to form multiply twinned face-centered cubic superlattices with decahedral and icosahedral symmetry, exhibiting crystallographically forbidden five-fold(More)
We report a facile synthesis of highly monodisperse colloidal Sn and Sn/SnO2 nanocrystals with mean sizes tunable over the range 9-23 nm and size distributions below 10%. For testing the utility of Sn/SnO2 nanocrystals as an active anode material in Li-ion batteries, a simple ligand-exchange procedure using inorganic capping ligands was applied to(More)