Learn More
The formation of haustoria is one of the hallmarks of the interaction of obligate biotrophic fungi with their host plants. In addition to their role in nutrient uptake, it is hypothesized that haustoria are actively involved in establishing and maintaining the biotrophic relationship. We have identified a 24.3-kDa protein that exhibited a very unusual(More)
Translocation of pathogen effector proteins into the host cell cytoplasm is a key determinant for the pathogenicity of many bacterial and oomycete plant pathogens. A number of secreted fungal avirulence (Avr) proteins are also inferred to be delivered into host cells, based on their intracellular recognition by host resistance proteins, including those of(More)
One of the emerging systems in plant-microbe interaction is the study of proteins, referred to as effectors, secreted by microbes in order to modulate host cells function and structure and to promote microbial growth on plant tissue. Current knowledge on fungal effectors derives mainly from biotrophic and hemibiotrophic plant fungal pathogens that have a(More)
Both mutualistic and biotrophic pathogenic fungi rely on living host plants for growth and reproduction and must modify host cell structure and function for successful infection. The deployment of a diverse set of secreted virulence determinants referred to as 'effectors', many of which are directly delivered into the host cell, is postulated to be the key(More)
Plant-pathogen interactions involve processes of pathogen offence, host defence and pathogen counter-attack that are commonly played out using molecules secreted by hosts and pathogens. Secreted pathogen molecules involved in these events, referred to as 'effectors', function either in the plant extracellular space (apoplast) or inside of plant cells after(More)
Many biotrophic fungal and oomycete pathogens share a common infection process involving the formation of haustoria, which penetrate host cell walls and form a close association with plant membranes. Recent studies have identified a class of pathogenicity effector proteins from these pathogens that is transferred into host cells from haustoria during(More)
As in nearly every discipline of plant biology, new insights are constantly changing our understanding of plant immunity. It is now clear that plant immunity is controlled by two layers of inducible responses: basal responses triggered by conserved microbial features and specific responses triggered by gene-for-gene recognition of pathogen effector proteins(More)
Effectors are pathogen-encoded proteins that are thought to facilitate infection by manipulation of host cells. Evidence showing that the effectors of some eukaryotic plant pathogens are able to interact directly with cytoplasmic host proteins indicates that translocation of these proteins into host cells is an important part of infection. Recently, we(More)
To investigate the role of N-terminal domains of plant disease resistance proteins in membrane targeting, the N termini of a number of Arabidopsis and flax disease resistance proteins were fused to green fluorescent protein (GFP) and the fusion proteins localized in planta using confocal microscopy. The N termini of the Arabidopsis RPP1-WsB and RPS5(More)
Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides(More)