#### Filter Results:

#### Publication Year

1992

2015

#### Publication Type

#### Co-author

#### Key Phrase

#### Publication Venue

Learn More

Let G be a graph. The core of G, denoted by G ∆ , is the subgraph of G induced by the vertices of degree ∆(G), where ∆(G) denotes the maximum degree of G. A k-edge coloring of G is a function f : E(G) → L such that |L| = k and f (e 1) = f (e 2) for all two adjacent edges e 1 and e 2 of G. The chromatic index of G, denoted by χ (G), is the minimum number k… (More)

Let G and H be two graphs. A proper vertex coloring of G is called a dynamic coloring, if for every vertex v with degree at least 2, the neighbors of v receive at least two different colors. The smallest integer k such that G has a dynamic coloring with k colors denoted by χ 2 (G). We denote the cartesian product of G and H by GH. In this paper, we prove… (More)

- ‹
- 1
- ›