Learn More
Since 2006 the rate of honey bee colony failure has increased significantly. As an aid to testing hypotheses for the causes of colony failure we have developed a compartment model of honey bee colony population dynamics to explore the impact of different death rates of forager bees on colony growth and development. The model predicts a critical threshold(More)
A honey bee colony is characterized by high genetic diversity among its workers, generated by high levels of multiple mating by its queen. Few clear benefits of this genetic diversity are known. Here we show that brood nest temperatures in genetically diverse colonies (i.e., those sired by several males) tend to be more stable than in genetically uniform(More)
Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here(More)
Reproductive swarms of honeybees are faced with the problem of finding a good site to establish a new colony. We examined the potential effects of swarm size on the quality of nest-site choice through a combination of modelling and field experiments. We used an individual-based model to examine the effects of swarm size on decision accuracy under the(More)
We consider a cell-chemotaxis model mechanism for generating some of the common, simple and complex, patterns found on the skin of snakes. By investigating the pattern generation potential of the model we show that many of the more complex patterns might result from growth of the integument during the pattern formation process. We suggest that many of the(More)
We study heterogeneous steady-state solutions of a cell-chemotaxis model for generating biological spatial patterns in two-dimensional domains with zero flux boundary conditions. We use the finite-element package ENTWIFE to investigate bifurcation from the uniform solution as the chemotactic parameter varies and as the domain scale and geometry change. We(More)
Resistance of Sarcoptes scabiei to various topical therapies has been described, but clinical assessment of treatment failure is problematic and in-vitro assays are generally not available. We describe a simple in-vitro analysis used to evaluate the relative efficacy of a range of topical, oral, and herbal treatments available in Australia for the treatment(More)
We present experimental results on the bacterium Salmonella typhimurium which show that cells of chemotactic strains aggregate in response to gradients of amino acids, attractants that they themselves excrete. Depending on the conditions under which cells are cultured, they form periodic arrays of continuous or perforated rings, which arise sequentially(More)
We consider a simple cell-chemotaxis model for spatial pattern formation on two-dimensional domains proposed by Oster and Murray (1989, J. exp. Zool. 251, 186-202). We determine finite-amplitude, steady-state, spatially heterogeneous solutions and study the effect of domain growth on the resulting patterns. We also investigate in-depth bifurcating solutions(More)