Learn More
The actions of corticotropin-releasing hormone (Crh), a mediator of endocrine and behavioural responses to stress, and the related hormone urocortin (Ucn) are coordinated by two receptors, Crhr1 (encoded by Crhr) and Crhr2. These receptors may exhibit distinct functions due to unique tissue distribution and pharmacology. Crhr-null mice have defined central(More)
Osteopontin (OPN) is a secreted extracellular phosphoprotein involved in diverse biologic functions, including inflammation, cell migration, and antiapoptotic processes. Here we investigate the neuroprotective potential of OPN to reduce cell death using both in vitro and in vivo models of ischemia. We show that incubation of cortical neuron cultures with(More)
CRF is released in response to various stressors and regulates ACTH secretion and glucocorticoid production. CRF overproduction has been implicated in affective disorders, such as depression and anorexia nervosa, and may lead to Cushing's syndrome. To test whether CRF overproduction leads to Cushing's syndrome and to develop an animal model of chronic(More)
Stroke and other cerebral vascular diseases are a leading cause of morbidity and mortality in the United States. Despite intensive research to identify interventions that lessen cerebrovascular injury, no major therapies exist. Development of stroke prophylaxis involves an understanding of the mechanisms of damage following cerebral ischemia, and(More)
Lipopolysaccharide (LPS) preconditioning provides neuroprotection against subsequent cerebral ischemic injury through activation of its receptor, Toll-like receptor 4 (TLR4). Paradoxically, TLR activation by endogenous ligands after ischemia worsens stroke damage. Here, we define a novel, protective role for TLRs after ischemia in the context of LPS(More)
Preconditioning with lipopolysaccharide (LPS), a toll-like receptor 4 (TLR4) ligand, provides neuroprotection against subsequent cerebral ischemic brain injury, through a tumor necrosis factor (TNF)alpha-dependent process. Here, we report the first evidence that another TLR, TLR9, can induce neuroprotection. We show that the TLR9 ligand CpG(More)
Recent studies indicate that inflammation following cerebral ischemia contributes to neuronal damage. The local activation of resident cells and efficient recruitment of leukocytes into the central nervous system are critical steps in this inflammatory process. Here we describe studies using flow cytometry to examine the temporal pattern of inflammatory(More)
Neural networks controlling food intake and energy homeostasis clearly involve proopiomelanocortin (POMC) neurons and their peptide transmitters. alpha-melanocyte-stimulating hormone from arcuate POMC neurons potently reduces food intake, whereas arcuate neuropeptide Y (NPY) neurons act in opposition to stimulate food intake. In addition to orexigenic(More)
Sensitivity to the euphoric and locomotor-activating effects of drugs of abuse may contribute to risk for excessive use and addiction. Repeated administration of psychostimulants such as methamphetamine (MA) can result in neuroadaptive consequences that manifest behaviorally as a progressive escalation of locomotor activation, termed psychomotor(More)
BACKGROUND Molecular mechanisms of neuroprotection that lead to ischaemic tolerance are incompletely understood. Identification of genes involved in the process would provide insight into cell survival and therapeutic approaches for stroke. We developed a mouse model of neuroprotection in stroke and did gene expression profiling to identify potential(More)