Learn More
A selective disruption of the mouse CENP-E gene was generated to test how this kinetochore-associated, kinesin-like protein contributes to chromosome segregation. The removal of CENP-E in primary cells produced spindles in which some metaphase chromosomes lay juxtaposed to a spindle pole, despite the absence of microtubules stably bound to their(More)
During fission yeast mitosis, the duplicated spindle pole bodies (SPBs) nucleate microtubule arrays that interdigitate to form the mitotic spindle. cut12.1 mutants form a monopolar mitotic spindle, chromosome segregation fails, and the mutant undergoes a lethal cytokinesis. The cut12(+) gene encodes a novel 62-kD protein with two predicted coiled coil(More)
The fission yeast Schizosaccharomyces pombe divides by medial fission through the use of an actomyosin contractile ring. Precisely at the end of anaphase, the ring begins to constrict and the septum forms. Proper coordination of cell division with mitosis is crucial to ensure proper segregation of chromosomes to daughter cells. The Sid2p kinase is one of(More)
Kinetochores of mitotic chromosomes are coupled to spindle microtubules in ways that allow the energy from tubulin dynamics to drive chromosome motion. Most kinetochore-associated microtubule ends display curving "protofilaments," strands of tubulin dimers that bend away from the microtubule axis. Both a kinetochore "plate" and an encircling, ring-shaped(More)
We have identified a novel centromere-associated gene product from Saccharomyces cerevisiae that plays a role in spindle assembly and stability. Strains with a deletion of SLK19 (synthetic lethal Kar3p gene) exhibit abnormally short mitotic spindles, increased numbers of astral microtubules, and require the presence of the kinesin motor Kar3p for viability.(More)
In the budding yeast Saccharomyces cerevisiae, the calmodulin-binding protein Spc110p/Nuf1p facilitates mitotic spindle formation from the fungal centrosome or spindle pole body (SPB). The human Spc110p orthologue kendrin is a centrosomal, calmodulin-binding pericentrin isoform that is specifically overexpressed in carcinoma cells. Here we establish an(More)
Members of the RCC1 protein family are chromatin-associated guanine nucleotide exchange factors that have been implicated in diverse cellular processes in various organisms, yet no consensus has been reached as to their primary biological role. The fission yeast Schizosaccharomyces pombe, a single-celled eukaryote, provides an in vivo system in which to(More)
We investigate acute effects of axial stretch, applied by carbon fibers (CFs), on diastolic Ca2+ spark rate in rat isolated cardiomyocytes. CFs were attached either to both cell ends (to maximize the stretched region), or to the center and one end of the cell (to compare responses in stretched and nonstretched half-cells). Sarcomere length was increased by(More)
High-pressure freezing (HPF) has been around since the mid-1980s as a cryopreparation technique for biological electron microscopy. It has taken quite some time to "catch on" but with the recent interest in cellular tomography and electron microscopy of vitreous cryosections it has been used more frequently. While HPF is relatively easy to do, there are a(More)
The 26S proteasome is a large multisubunit complex involved in degrading both cytoplasmic and nuclear proteins. We have investigated the localization of this complex in the fission yeast, Schizosaccharomyces pombe. Immunofluorescence microscopy shows a striking localization pattern whereby the proteasome is found predominantly at the nuclear periphery, both(More)