Mary M. Mantle

Learn More
Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity(More)
SAM(g2) is an automated analysis that transforms the MEG data into a functional image of spike-like activity, giving the source waveforms for those locations. Since the source waveforms estimated by SAM have higher signal-to-noise ratio (SNR) than does the raw MEG data, it is possible to automatically mark the location and timing of each spike for(More)
Although interictal epileptic spikes are defined as fast transient activity, the spatial distribution of spike-related high-frequency power changes is unknown. In this study, we localized the sources of spike-locked power increases in the beta and gamma band with magnetoencephalography and an adaptive spatial filtering technique and tested the usefulness of(More)
OBJECTIVE To evaluate the ability of MEG to detect medial temporal spikes in patients with known medial temporal lobe epilepsy (MTLE) and to use magnetic source imaging (MSI) with equivalent current dipoles to examine localization and orientation of spikes and their relation to surgical outcome. METHODS We prospectively obtained MSI on a total of 25(More)
OBJECTIVE Seizures are more frequent in patients with Alzheimer's disease (AD) and can hasten cognitive decline. However, the incidence of subclinical epileptiform activity in AD and its consequences are unknown. Motivated by results from animal studies, we hypothesized higher than expected rates of subclinical epileptiform activity in AD with deleterious(More)
BACKGROUND The unambiguous identification of the epileptogenic tubers in individuals with tuberous sclerosis complex (TSC) can be challenging. We assessed whether magnetic source imaging (MSI) and coregistration of (18)fluorodeoxyglucose PET (FDG-PET) with MRI could improve the identification of the epileptogenic regions noninvasively in children with TSC.(More)
OBJECTIVE Automated adaptive spatial filtering techniques can be applied to magnetoencephalographic (MEG) data collected from people with epilepsy. Source waveforms estimated by these methods have higher signal-to-noise ratio (SNR) than spontaneous MEG data, allowing identification and location of interictal spikes. The software tool SAM(g(2)) provides an(More)
OBJECT The aim of this study was to evaluate the spatial accuracy of interictal magnetoencephalography (MEG) in localizing the primary epileptogenic focus in comparison with alternative MEG-derived estimates such as ictal onset recording or sensory mapping of the periphery where seizures manifest. METHODS During this retrospective study of 12 patients(More)
OBJECT Routine scalp electroencephalography (EEG) cannot always distinguish whether generalized epileptiform discharges are the result of primary bilateral synchrony or secondary bilateral synchrony (SBS) from a focal origin; this is an important distinction because the latter may be amenable to resection. Whole-head magnetoencephalography (MEG) has(More)
Both electroencephalography (EEG) and magnetoencephalography (MEG) localize epileptiform activity but may yield different results. This discordance may arise from different detection capabilities or from different data collection and interpretation techniques. Comparisons of MEG and EEG have focused on detection of individual spikes. However, side-by-side(More)