Mary M. Hayhoe

Learn More
To describe phenomena that occur at different time scales, computational models of the brain must incorporate different levels of abstraction. At time scales of approximately 1/3 of a second, orienting movements of the body play a crucial role in cognition and form a useful computational level--more abstract than that used to capture natural phenomena but(More)
Abstract The very limited capacity of short-term or working memory is one of the most prominent features of human cognition. Most studies have stressed delimiting the upper bounds of this memory in memorization tasks rather than the performance of everyday tasks. We designed a series of experiments to test the use of short-term memory in the course of a(More)
The classic experiments of Yarbus over 50 years ago revealed that saccadic eye movements reflect cognitive processes. But it is only recently that three separate advances have greatly expanded our understanding of the intricate role of eye movements in cognitive function. The first is the demonstration of the pervasive role of the task in guiding where and(More)
This paper investigates the temporal dependencies of natural vision by measuring eye and hand movements while subjects made a sandwich. The phenomenon of change blindness suggests these temporal dependencies might be limited. Our observations are largely consistent with this, suggesting that much natural vision can be accomplished with "just-in-time"(More)
Two recent studies have investigated the relations of eye and hand movements in extended food preparation tasks, and here the results are compared. The tasks could be divided into a series of actions performed on objects. The eyes usually reached the next object in the sequence before any sign of manipulative action, indicating that eye movements are(More)
This paper presents the case for a functional account of vision. A variety of studies have consistently revealed “change blindness” or insensitivity to changes in the visual scene during an eye movement. These studies indicate that only a small part of the information in the scene is represented in the brain from moment to moment. It is still unclear,(More)
Models of gaze allocation in complex scenes are derived mainly from studies of static picture viewing. The dominant framework to emerge has been image salience, where properties of the stimulus play a crucial role in guiding the eyes. However, salience-based schemes are poor at accounting for many aspects of picture viewing and can fail dramatically in the(More)
This paper examines the nature of visual representations that direct ongoing performance in sensorimotor tasks. Performance of such natural tasks requires relating visual information from different gaze positions. To explore this we used the technique of making task relevant display changes during saccadic eye movements. Subjects copied a pattern of colored(More)
The small angle subtended by the human fovea places a premium on the ability to quickly and accurately direct the gaze to targets of interest. Thus the resultant saccadic eye fixations are a very instructive behaviour, revealing much about the underlying cognitive mechanisms that guide them. Of particular interest are the eye fixations used in hand-eye(More)
The deployment of human gaze has been almost exclusively studied independent of any specific ongoing task and limited to two-dimensional picture viewing. This contrasts with its use in everyday life, which mostly consists of purposeful tasks where gaze is crucially involved. To better understand deployment of gaze under such circumstances, we devised a(More)