Mary K. Danks

Learn More
The poor prognosis for patients with aggressive or metastatic tumors and the toxic side effects of currently available treatments necessitate the development of more effective tumor-selective therapies. Stem/progenitor cells display inherent tumor-tropic properties that can be exploited for targeted delivery of anticancer genes to invasive and metastatic(More)
Irinotecan [7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (CPT-11)] is metabolized by esterases to yield the potent topoisomerase I poison 7-ethyl-10-hydroxycamptothecin. One of the major side effects observed with CPT-11 is gastrointestinal toxicity, and we supposed that this might be due to local activation of CPT-11 within the gut.(More)
The recently introduced camptothecin-derived chemotherapeutic agents have demonstrated remarkable promise in cancer therapy and as such have been approved for use in humans for the treatment of ovarian, lung, and colon cancer. CPT-11 is a prodrug that is activated by esterases to yield the potent topoisomerase I inhibitor, SN-38. Considerable success has(More)
The efficacy of protracted schedules of therapy of the topoisomerase I inhibitors 9-dimethylaminomethyl-10-hydroxycamptothecin (topotecan) and 7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothecin (irinotecan; CPT-11) were evaluated against a panel of 21 human tumor xenografts derived from adult and pediatric malignancies. Tumors included eight(More)
Patients treated with high doses of CPT-11 rapidly develop a cholinergic syndrome that can be alleviated by atropine. Although CPT-11 was not a substrate for acetylcholinesterase (AcChE), in vitro assays confirmed that CPT-11 inhibited both human and electric eel AcChE with apparent K(i)s of 415 and 194 nM, respectively. In contrast, human or equine(More)
We have isolated a cDNA encoding a rabbit carboxylesterase (CE; EC 3.1.1.1) that converts the camptothecin-derived prodrug irinotecan (CPT-11) to the potent topoisomerase I inhibitor 7-ethyl-10-hydroxycamptothecin. NH2-terminal amino acid sequencing of a purified rabbit CE allowed the design of redundant oligonucleotides to perform PCR from rabbit liver(More)
Enzyme activation of prodrugs to improve the therapeutic index of specific anticancer agents is an attractive alternative to current chemotherapy regimens. This study addresses the potential for activating irinotecan (CPT-11) with recombinant carboxylesterases (CEs). CEs are a ubiquitous class of enzymes thought to be involved in the detoxification of(More)
BACKGROUND The p53 tumor suppressor gene is the most commonly mutated gene in human cancer, and mutations arise in a wide variety of tumor types. Wild-type p53 functions as a regulator of apoptosis, so mutations in the p53 gene are generally associated with aggressive tumors and a poor prognosis. PROCEDURE We have investigated the p53 mutation and MDM2(More)
The simultaneous development of resistance to the cytotoxic effects of several classes of natural product anticancer drugs, after exposure to only one of these agents, is referred to as multiple drug resistance (MDR). At least two distinct mechanisms for MDR have been postulated: that associated with P-glycoprotein and that thought to be due to an(More)
Resistance to the cytotoxic effects of many natural product drugs after exposure to a single agent is a common observation. The classes of drugs included in the "classic" multiple drug resistance phenotype are Vinca alkaloids, anthracyclines, epipodophyllotoxins, and antibiotics. We report here the characterization of a human leukemic cell line (CEM/VM-1)(More)