Mary Jane Irwin

Learn More
434 0740-7475/05/$20.00 © 2005 IEEE Copublished by the IEEE CS and the IEEE CASS IEEE Design & Test of Computers AS DEVICES SHRINK toward the nanometer scale, on-chip interconnects are becoming a critical bottleneck in meeting performance and power consumption requirements of chip designs. Industry and academia recognize the interconnect problem as an(More)
Optimizations aimed at improving the efficiency of on-chip memories are extremely important. We propose a compiler-controlled dynamic on-chip scratch-pad memory (SPM) management framework that uses both loop and data transformations. Experimental results obtained using a generic cost model indicate significant reductions in data transfer activity between(More)
In this paper, we presen t the design and use of a comprehensiv e framework, <italic>SimplePower</italic>, for ev aluating the effect of high-level algorithmic, architectural, and compilation trade-offs on energy. An execution-driven, cycle-accurate RT lev el energy estimation tool that uses transition sensitive energy models forms the cornerstone of this(More)
Energy-efficiency and reliability are two major design constraints influencing next generation system designs. In this work, we focus on the interaction between power consumption and reliability considering the on-chip data caches. First, we investigate the impact of two commonly used architectural-level leakage reduction approaches on the data reliability.(More)
As technology scales, fault tolerance is becoming a key concern in on-chip communication. Consequently, this work examines fault tolerant communication algorithms for use in the NoC domain. Two different flooding algorithms and a random walk algorithm are investigated. We show that the flood-based fault tolerant algorithms have an exceedingly high(More)
As technology scales, interconnects dominate the performance and power behavior of deep submicron designs. Three-dimensional integrated circuits (3D ICs) have been proposed as a way to mitigate the interconnect challenges. In this paper, we explore the architectural design of cache memories using 3D circuits. We present a delay and energy model, 3DCacti, to(More)
Interconnects are becoming an increasing problem from both performance and power consumption perspective in future technology nodes. The introduction of 3D chip architectures, with their intrinsic capability of reducing wire length, is one of the promising solutions to mitigate the interconnect problem. While interconnect power consumption reduces due to(More)
FPGAs are being increasingly used in a wide variety of applications. While power optimization has been only of secondary importance in many FPGA applications, growing importance of leakage in FPGAs designed in 90nm and below makes it imperative to treat power optimization as a first class citizen. In this paper, we propose a leakage-saving technique for(More)
A new approximation heuristic for finding a rectilinear Steiner tree of a set of nodes is presented. It starts with a rectilinear minimum spanning tree of the nodes and repeatedly connects a node to the nearest point on the rectangular layout of an edge, removing the longest edge of the loop thus formed. A simple implementation of the heuristic using(More)