Mary I. Townsley

Learn More
In this study, 14 canine lung lobes were isolated and perfused with autologous blood at constant pressure (CP) or constant flow (CF). Pulmonary capillary pressure (Pc) was measured via venous occlusion or simultaneous arterial and venous occlusions. Arterial and venous pressures and blood flow were measured concurrently so that total pulmonary vascular(More)
Disruption of the alveolar septal barrier leads to acute lung injury, patchy alveolar flooding, and hypoxemia. Although calcium entry into endothelial cells is critical for loss of barrier integrity, the cation channels involved in this process have not been identified. We hypothesized that activation of the vanilloid transient receptor potential channel(More)
We have previously implicated transient receptor potential vanilloid 4 (TRPV4) channels and alveolar macrophages in initiating the permeability increase in response to high peak inflation pressure (PIP) ventilation. Alveolar macrophages were harvested from TRPV4(-/-) and TRPV4(+/+) mice and instilled in the lungs of mice of the opposite genotype. Filtration(More)
The pulmonary vasculature comprises three anatomic compartments connected in series: the arterial tree, an extensive capillary bed, and the venular tree. Although, in general, this vasculature is thin-walled, structure is nonetheless complex. Contributions to structure (and thus potentially to function) from cells other than endothelial and smooth muscle(More)
Previous studies indicate that vascular permeability is increased in skeletal muscle subjected to 4 hours of inflow occlusion. However, the mechanism(s) underlying the increase in permeability are unknown. The aim of this study was to assess the role of oxygen-derived free radicals and histamine as putative mediators of the increased permeability in(More)
Pulmonary edema resulting from high pulmonary venous pressure (PVP) is a major cause of morbidity and mortality in heart failure (HF) patients, but current treatment options demonstrate substantial limitations. Recent evidence from rodent lungs suggests that PVP-induced edema is driven by activation of pulmonary capillary endothelial transient receptor(More)
We have previously implicated calcium entry through stretch-activated cation channels in initiating the acute pulmonary vascular permeability increase in response to high peak inflation pressure (PIP) ventilation. However, the molecular identity of the channel is not known. We hypothesized that the transient receptor potential vanilloid-4 (TRPV4) channel(More)
The effect of peak airway pressure (Paw) on vascular permeability and the "safety factor" against edema formation was determined in isolated blood-perfused lower lobes of dog lungs. Microvascular permeability was evaluated using the measured filtration coefficient (Kf,C), isogravimetric capillary pressure (Pc,i), and critical capillary pressure (Pcrit) for(More)
Store-operated calcium (SOC) entry is sufficient to disrupt the extra-alveolar, but not the alveolar, endothelial cell barrier. Mechanism(s) underlying such insensitivity to transitions in cytosolic calcium ([Ca2+]i) in microvascular endothelial cells are unknown. Depletion of stored Ca2+ activates a larger SOC entry response in extra-alveolar (pulmonary(More)
Hyaluronan (formerly hyaluronic acid) is an important constituent of the interstitial matrix in skin. Following major burn injury in animal models, plasma hyaluronan can increase to levels 10-fold greater than normal. The present experiments were designed to determine whether this is a result of the increased lymph flow (QL) accompanying the injury or of an(More)