Learn More
In three patients with mitochondrial DNA duplications, there are two additional re-arranged molecules derived from mitochondrial DNA. Two forms of closed circular deletions of mitochondrial DNA have been characterised in all three patients, one being a monomer, and the other a dimer. The junction fragments appear to be the same in the deletion and the(More)
Restriction enzyme analysis was done on total cellular DNA extracted from whole blood in two patients with mitochondrial myopathy and multisystem involvement and their families. The two patients had an abnormal mitochondrial genome with a large (about 8 kb) duplication present in several tissues. Normal mitochondrial DNA (mtDNA) was also present, but within(More)
Promiscuous gene expression (PGE) by thymic epithelial cells (TEC) is essential for generating a diverse T cell antigen receptor repertoire tolerant to self-antigens, and thus for avoiding autoimmunity. Nevertheless, the extent and nature of this unusual expression program within TEC populations and single cells are unknown. Using deep transcriptome(More)
The ceroid-lipofuscinoses are a group of inherited neurodegenerative disorders characterized by the accumulation of autofluorescent lipopigment in neurons and other cell types. The underlying biochemical defect is unknown. Batten disease (Spielmeyer-Vogt disease, juvenile onset neuronal ceroid-lipofuscinosis) displays autosomal recessive inheritance.(More)
The pathogenic bacterium Haemophilus influenzae causes meningitis, epiglottitis, pneumonia, otitis media and other infections. To further understand the genetic basis of invasive disease and to inform about the bacterium's requirements in an in vivo environment, we analysed a library of 1632 insertional Tn1545 -Delta3 transposon mutants for their capacity(More)
The availability of the complete 1.83-megabase-pair sequence of the Haemophilus influenzae strain Rd genome has facilitated significant progress in investigating the biology of H.influenzae lipopolysaccharide (LPS), a major virulence determinant of this human pathogen. By searching the H. influenzae genomic database, with sequences of known LPS biosynthetic(More)
Lipopolysaccharide is the major glycolipid of the cell wall of the bacterium Haemophilus influenzae, a Gram-negative commensal and pathogen of humans. Lipopolysaccharide is both a virulence determinant and a target for host immune responses. Glycosyltransferases have high donor and acceptor substrate specificities that are generally limited to catalysis of(More)
Many of the genes for lipopolysaccharide (LPS) biosynthesis in Haemophilus influenzae are phase variable. The mechanism of this variable expression involves slippage of tetranucleotide repeats located within the reading frame of these genes. Based on this, we hypothesized that tetranucleotide repeat sequences might be used to identify as yet unrecognized(More)
The recognition sites on phi 105 DNA for the restriction endonucleases EcoRI, Bg/II, SmaI, KpnI, SstI, SalI, XhoI, NcoI, PstI, HindIII, ClaI, EcoRV and MluI have been mapped. The sites for EcoRI are shown to be different from those published earlier. The DNA from phi 105 contains no recognition sites for the endonucleases BamHI and XbaI.
The whole genome sequence (1.83 Mbp) of Haemophilus influenzae strain Rd was searched to identify tandem oligonucleotide repeat sequences. Loss or gain of one or more nucleotide repeats through a recombination-independent slippage mechanism is known to mediate phase variation of surface molecules of pathogenic bacteria, including H. influenzae. This(More)