Mary C. Kosciuk

Learn More
Previous studies have reported immunoglobulin-positive neurons in Alzheimer's disease (AD) brains, an observation indicative of blood-brain barrier (BBB) breakdown. Recently, we demonstrated the nearly ubiquitous presence of brain-reactive autoantibodies in human sera. The significance of these observations to AD pathology is unknown. Here, we show that(More)
Diabetes mellitus (DM) and hypercholesterolemia (HC) have emerged as major risk factors for Alzheimer's disease, highlighting the importance of vascular health to normal brain functioning. Our previous study showed that DM and HC favor the development of advanced coronary atherosclerosis in a porcine model, and that treatment with darapladib, an inhibitor(More)
We have investigated the possibility that soluble, blood-borne amyloid beta (Abeta) peptides can cross a defective blood-brain barrier (BBB) and interact with neurons in the brain. Immunohistochemical analyses revealed extravasated plasma components, including Abeta42 in 19 of 21 AD brains, but in only 3 of 13 age-matched control brains, suggesting that a(More)
The presence of self-reactive IgG autoantibodies in human sera is largely thought to represent a breakdown in central tolerance and is typically regarded as a harbinger of autoimmune pathology. In the present study, immune-response profiling of human serum from 166 individuals via human protein microarrays demonstrates that IgG autoantibodies are abundant(More)
Peptidyl arginine deiminases (PADs) catalyze a post-translational protein modification reaction called citrullination, where arginine is converted to citrulline. This modification has been linked to the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA). More recently, several studies have suggested that Alzheimer's disease (AD), a(More)
A large percentage of patients subjected to general anesthesia at 65 years and older exhibit postoperative delirium (POD). Here, we test the hypothesis that inhaled anesthetics (IAs), such as Sevoflurane and Isoflurane, act directly on brain vascular endothelial cells (BVECs) to increase blood-brain barrier (BBB) permeability, thereby contributing to POD.(More)
Prenatal cocaine exposure causes sustained phosphorylation of the synaptic anchoring protein, glutamate receptor interacting protein (GRIP1/2), preventing synaptic targeting of the GluR2/3-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs; J. Neurosci. 29: 6308-6319, 2009). Because overexpression of(More)
Prenatal cocaine exposure produces sustained neurobehavioral and brain synaptic changes closely resembling those of animals with defective AMPA receptors (AMPARs). We hypothesized that prenatal cocaine exposure attenuates AMPAR signaling by interfering with AMPAR synaptic targeting. AMPAR function is governed by receptor cycling on and off the synaptic(More)
The possible involvement of myosin in elevation of neural folds in the chick was studied. Indirect immunofluorescence revealed the presence of myosin in the neuroepithelium as early as the neural-plate stage and was concentrated in the apical regions of neuroepithelial cells where microfilaments are known to be organized into discrete bundles. This(More)
Axons have been shown to contain substantial quantities of actin distributed along their length. However, the general lack of information on the structure and organizational state of this protein in axons has made it difficult to assign it a functional role. In the present study, we used electron microscopic immunocytochemistry (immunogold labeling) on(More)