Learn More
Fluoride-containing materials have been suggested to control enamel demineralization around orthodontic brackets during the treatment with fixed appliances. The improvement of their properties has been made through innovations, such as the application of nanotechnology by incorporation of nanofillers. This in vitro study evaluated the capacity of fluoride(More)
OBJECTIVES Demineralized lesions in tooth enamel around orthodontic brackets are caused by acids from cariogenic biofilm. This study aimed to develop a novel antibacterial orthodontic cement by incorporating a quaternary ammonium monomer dimethylaminododecyl methacrylate (DMADDM) into a commercial orthodontic cement, and to investigate the effects on(More)
OBJECTIVES Secondary caries is the main reason for restoration failure, and replacement of the failed restorations accounts for 50-70% of all restorations. Antibacterial adhesives could inhibit residual bacteria in tooth cavity and invading bacteria along the margins. Calcium (Ca) and phosphate (P) ion release could remineralize the lesions. The objectives(More)
OBJECTIVES Secondary caries at the restoration margins remains the main reason for failure. Although calcium phosphate (CaP) composites are promising for caries inhibition, there has been no report of CaP composite to inhibit caries in situ. The objectives of this study were to investigate the caries-inhibition effect of nanocomposite containing(More)
OBJECTIVE Antibacterial bonding agents are promising to hinder the residual and invading bacteria at the tooth-restoration interfaces. The objectives of this study were to develop an antibacterial bonding agent by incorporation of quaternary ammonium dimethacrylate (QADM) and nanoparticles of silver (NAg), and to investigate the effect of QADM-NAg adhesive(More)
The objectives of this study were to develop the first protein-repellent resin-modified glass ionomer cement (RMGI) by incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC) for orthodontic applications, and to investigate the MPC effects on protein adsorption, biofilm growth, and enamel bond strength. MPC was incorporated into RMGI at 0% (control),(More)
Various methods have been applied to evaluate the effect of erosion and abrasion. So, the aim of this study was to check the applicability of stylus profilometry (SP), surface hardness (SH) and focus-variation 3D microscopy (FVM) to the analysis of human enamel and dentin subjected to erosion/abrasion. The samples were randomly allocated into four groups (n(More)
Secondary caries remains the main reason for dental restoration failure. Replacement of failed restorations accounts for 50%-70% of all restorations performed. Antibacterial adhesives could inhibit biofilm acids at tooth-restoration margins, and calcium phosphate (CaP) ions could remineralize tooth lesions. The objectives of this study were to: (1)(More)
Nanotechnology has been applied to dental materials as an innovative concept for the development of materials with better properties and anticaries potential. In this review we discuss the current progress and future applications of functional nanoparticles incorporated in dental restorative materials as useful strategies to dental caries management. We(More)
OBJECTIVES Fracture and secondary caries are the primary reasons for dental restoration failure. The objective of this study was to develop a self-healing composite to heal cracks, while containing dimethylaminohexadecyl methacrylate (DMAHDM) for antibacterial function and nanoparticles of amorphous calcium phosphate (NACP) for remineralization. METHODS(More)